MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcj Unicode version

Theorem efcj 12375
Description: Exponential function of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
efcj  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )

Proof of Theorem efcj
Dummy variables  j 
k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cjcl 11592 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
2 eqid 2285 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) )
32efcvg 12368 . . 3  |-  ( ( * `  A )  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
41, 3syl 15 . 2  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
5 nn0uz 10264 . . 3  |-  NN0  =  ( ZZ>= `  0 )
6 eqid 2285 . . . 4  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
76efcvg 12368 . . 3  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  A ) )
8 seqex 11050 . . . 4  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  e.  _V
98a1i 10 . . 3  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  e. 
_V )
10 0z 10037 . . . 4  |-  0  e.  ZZ
1110a1i 10 . . 3  |-  ( A  e.  CC  ->  0  e.  ZZ )
126eftval 12360 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
1312adantl 452 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
14 eftcl 12357 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2359 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
165, 11, 15serf 11076 . . . 4  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) : NN0 --> CC )
17 ffvelrn 5665 . . . 4  |-  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) : NN0 --> CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j )  e.  CC )
1816, 17sylan 457 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j )  e.  CC )
19 addcl 8821 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( k  +  m
)  e.  CC )
2019adantl 452 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( k  +  m )  e.  CC )
21 simpl 443 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  A  e.  CC )
22 elfznn0 10824 . . . . . 6  |-  ( k  e.  ( 0 ... j )  ->  k  e.  NN0 )
2321, 22, 15syl2an 463 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
24 simpr 447 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
2524, 5syl6eleq 2375 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ( ZZ>= ` 
0 ) )
26 cjadd 11628 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( * `  (
k  +  m ) )  =  ( ( * `  k )  +  ( * `  m ) ) )
2726adantl 452 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( * `  ( k  +  m
) )  =  ( ( * `  k
)  +  ( * `
 m ) ) )
28 expcl 11123 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
29 faccl 11300 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3029adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
3130nncnd 9764 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
3230nnne0d 9792 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  =/=  0 )
3328, 31, 32cjdivd 11710 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( * `  ( A ^ k ) )  /  ( * `  ( ! `  k ) ) ) )
34 cjexp 11637 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )
3530nnred 9763 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
3635cjred 11713 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( ! `  k )
)  =  ( ! `
 k ) )
3734, 36oveq12d 5878 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  ( A ^ k ) )  /  ( * `
 ( ! `  k ) ) )  =  ( ( ( * `  A ) ^ k )  / 
( ! `  k
) ) )
3833, 37eqtrd 2317 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( * `  A
) ^ k )  /  ( ! `  k ) ) )
3913fveq2d 5531 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( * `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
402eftval 12360 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( ( * `
 A ) ^
k )  /  ( ! `  k )
) )
4140adantl 452 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( ( * `  A ) ^ k
)  /  ( ! `
 k ) ) )
4238, 39, 413eqtr4d 2327 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( ( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) `  k
) )
4321, 22, 42syl2an 463 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( * `  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )
4420, 23, 25, 27, 43seqhomo 11095 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( * `  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) )  =  (  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) ) `  j ) )
4544eqcomd 2290 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) ) `  j )  =  ( * `  (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 j ) ) )
465, 7, 9, 11, 18, 45climcj 12080 . 2  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( * `
 ( exp `  A
) ) )
47 climuni 12028 . 2  |-  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) )  ~~>  ( exp `  (
* `  A )
)  /\  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  ~~>  ( * `  ( exp `  A ) ) )  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
484, 46, 47syl2anc 642 1  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790   class class class wbr 4025    e. cmpt 4079   -->wf 5253   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739    + caddc 8742    / cdiv 9425   NNcn 9748   NN0cn0 9967   ZZcz 10026   ZZ>=cuz 10232   ...cfz 10784    seq cseq 11048   ^cexp 11106   !cfa 11290   *ccj 11583    ~~> cli 11960   expce 12345
This theorem is referenced by:  resinval  12417  recosval  12418  logcj  19962  cosargd  19964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-ico 10664  df-fz 10785  df-fzo 10873  df-fl 10927  df-seq 11049  df-exp 11107  df-fac 11291  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351
  Copyright terms: Public domain W3C validator