MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcj Unicode version

Theorem efcj 12336
Description: Exponential function of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
efcj  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )

Proof of Theorem efcj
StepHypRef Expression
1 cjcl 11556 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
2 eqid 2258 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) )
32efcvg 12329 . . 3  |-  ( ( * `  A )  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
41, 3syl 17 . 2  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
5 nn0uz 10230 . . 3  |-  NN0  =  ( ZZ>= `  0 )
6 eqid 2258 . . . 4  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
76efcvg 12329 . . 3  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  A ) )
8 seqex 11015 . . . 4  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  e.  _V
98a1i 12 . . 3  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  e. 
_V )
10 0z 10003 . . . 4  |-  0  e.  ZZ
1110a1i 12 . . 3  |-  ( A  e.  CC  ->  0  e.  ZZ )
126eftval 12321 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
1312adantl 454 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
14 eftcl 12318 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2332 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
165, 11, 15serf 11041 . . . 4  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) : NN0 --> CC )
17 ffvelrn 5597 . . . 4  |-  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) : NN0 --> CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j )  e.  CC )
1816, 17sylan 459 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j )  e.  CC )
19 addcl 8787 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( k  +  m
)  e.  CC )
2019adantl 454 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( k  +  m )  e.  CC )
21 simpl 445 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  A  e.  CC )
22 elfznn0 10789 . . . . . 6  |-  ( k  e.  ( 0 ... j )  ->  k  e.  NN0 )
2321, 22, 15syl2an 465 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
24 simpr 449 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
2524, 5syl6eleq 2348 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ( ZZ>= ` 
0 ) )
26 cjadd 11592 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( * `  (
k  +  m ) )  =  ( ( * `  k )  +  ( * `  m ) ) )
2726adantl 454 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( * `  ( k  +  m
) )  =  ( ( * `  k
)  +  ( * `
 m ) ) )
28 expcl 11088 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
29 faccl 11265 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3029adantl 454 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
3130nncnd 9730 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
3230nnne0d 9758 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  =/=  0 )
3328, 31, 32cjdivd 11674 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( * `  ( A ^ k ) )  /  ( * `  ( ! `  k ) ) ) )
34 cjexp 11601 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )
3530nnred 9729 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
3635cjred 11677 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( ! `  k )
)  =  ( ! `
 k ) )
3734, 36oveq12d 5810 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  ( A ^ k ) )  /  ( * `
 ( ! `  k ) ) )  =  ( ( ( * `  A ) ^ k )  / 
( ! `  k
) ) )
3833, 37eqtrd 2290 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( * `  A
) ^ k )  /  ( ! `  k ) ) )
3913fveq2d 5462 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( * `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
402eftval 12321 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( ( * `
 A ) ^
k )  /  ( ! `  k )
) )
4140adantl 454 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( ( * `  A ) ^ k
)  /  ( ! `
 k ) ) )
4238, 39, 413eqtr4d 2300 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( ( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) `  k
) )
4321, 22, 42syl2an 465 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( * `  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )
4420, 23, 25, 27, 43seqhomo 11060 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( * `  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) )  =  (  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) ) `  j ) )
4544eqcomd 2263 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) ) `  j )  =  ( * `  (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 j ) ) )
465, 7, 9, 11, 18, 45climcj 12044 . 2  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( * `
 ( exp `  A
) ) )
47 climuni 11992 . 2  |-  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) )  ~~>  ( exp `  (
* `  A )
)  /\  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  ~~>  ( * `  ( exp `  A ) ) )  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
484, 46, 47syl2anc 645 1  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2763   class class class wbr 3997    e. cmpt 4051   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703   0cc0 8705    + caddc 8708    / cdiv 9391   NNcn 9714   NN0cn0 9933   ZZcz 9992   ZZ>=cuz 10198   ...cfz 10749    seq cseq 11013   ^cexp 11071   !cfa 11255   *ccj 11547    ~~> cli 11924   expce 12306
This theorem is referenced by:  resinval  12378  recosval  12379  logcj  19923  cosargd  19925
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-rp 10323  df-ico 10629  df-fz 10750  df-fzo 10838  df-fl 10892  df-seq 11014  df-exp 11072  df-fac 11256  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-sum 12125  df-ef 12312
  Copyright terms: Public domain W3C validator