MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efexp Unicode version

Theorem efexp 12690
Description: Exponential function to an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )

Proof of Theorem efexp
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 10276 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 mulcom 9065 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
31, 2sylan2 461 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
43fveq2d 5723 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( exp `  ( N  x.  A
) ) )
5 oveq2 6080 . . . . . 6  |-  ( j  =  0  ->  ( A  x.  j )  =  ( A  x.  0 ) )
65fveq2d 5723 . . . . 5  |-  ( j  =  0  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  0 ) ) )
7 oveq2 6080 . . . . 5  |-  ( j  =  0  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ 0 ) )
86, 7eqeq12d 2449 . . . 4  |-  ( j  =  0  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) ) )
9 oveq2 6080 . . . . . 6  |-  ( j  =  k  ->  ( A  x.  j )  =  ( A  x.  k ) )
109fveq2d 5723 . . . . 5  |-  ( j  =  k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  k )
) )
11 oveq2 6080 . . . . 5  |-  ( j  =  k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ k
) )
1210, 11eqeq12d 2449 . . . 4  |-  ( j  =  k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  k
) )  =  ( ( exp `  A
) ^ k ) ) )
13 oveq2 6080 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A  x.  j )  =  ( A  x.  ( k  +  1 ) ) )
1413fveq2d 5723 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  ( k  +  1 ) ) ) )
15 oveq2 6080 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ (
k  +  1 ) ) )
1614, 15eqeq12d 2449 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  (
k  +  1 ) ) )  =  ( ( exp `  A
) ^ ( k  +  1 ) ) ) )
17 oveq2 6080 . . . . . 6  |-  ( j  =  -u k  ->  ( A  x.  j )  =  ( A  x.  -u k ) )
1817fveq2d 5723 . . . . 5  |-  ( j  =  -u k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  -u k ) ) )
19 oveq2 6080 . . . . 5  |-  ( j  =  -u k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ -u k
) )
2018, 19eqeq12d 2449 . . . 4  |-  ( j  =  -u k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  -u k
) )  =  ( ( exp `  A
) ^ -u k
) ) )
21 oveq2 6080 . . . . . 6  |-  ( j  =  N  ->  ( A  x.  j )  =  ( A  x.  N ) )
2221fveq2d 5723 . . . . 5  |-  ( j  =  N  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  N )
) )
23 oveq2 6080 . . . . 5  |-  ( j  =  N  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ N
) )
2422, 23eqeq12d 2449 . . . 4  |-  ( j  =  N  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  N
) )  =  ( ( exp `  A
) ^ N ) ) )
25 ef0 12681 . . . . 5  |-  ( exp `  0 )  =  1
26 mul01 9234 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
2726fveq2d 5723 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( exp `  0
) )
28 efcl 12673 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2928exp0d 11505 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  A
) ^ 0 )  =  1 )
3025, 27, 293eqtr4a 2493 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) )
31 oveq1 6079 . . . . . . 7  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
3231adantl 453 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  ( A  x.  k
) )  x.  ( exp `  A ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
33 nn0cn 10220 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  k  e.  CC )
34 ax-1cn 9037 . . . . . . . . . . . 12  |-  1  e.  CC
35 adddi 9068 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
3634, 35mp3an3 1268 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
37 mulid1 9077 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
3837adantr 452 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  1 )  =  A )
3938oveq2d 6088 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  +  ( A  x.  1 ) )  =  ( ( A  x.  k )  +  A ) )
4036, 39eqtrd 2467 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4133, 40sylan2 461 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4241fveq2d 5723 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( exp `  ( ( A  x.  k )  +  A
) ) )
43 mulcl 9063 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  k
)  e.  CC )
4433, 43sylan2 461 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  k
)  e.  CC )
45 simpl 444 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
46 efadd 12684 . . . . . . . . 9  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4744, 45, 46syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4842, 47eqtrd 2467 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4948adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
50 expp1 11376 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5128, 50sylan 458 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5251adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  A ) ^ (
k  +  1 ) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
5332, 49, 523eqtr4d 2477 . . . . 5  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) )
5453exp31 588 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) ) ) )
55 oveq2 6080 . . . . . 6  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( 1  /  ( exp `  ( A  x.  k )
) )  =  ( 1  /  ( ( exp `  A ) ^ k ) ) )
56 nncn 9997 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  CC )
57 mulneg2 9460 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5856, 57sylan2 461 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5958fveq2d 5723 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( exp `  -u ( A  x.  k ) ) )
6056, 43sylan2 461 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  k
)  e.  CC )
61 efneg 12687 . . . . . . . . 9  |-  ( ( A  x.  k )  e.  CC  ->  ( exp `  -u ( A  x.  k ) )  =  ( 1  /  ( exp `  ( A  x.  k ) ) ) )
6260, 61syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  -u ( A  x.  k )
)  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
6359, 62eqtrd 2467 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
64 nnnn0 10217 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
65 expneg 11377 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6628, 64, 65syl2an 464 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6763, 66eqeq12d 2449 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k )  <-> 
( 1  /  ( exp `  ( A  x.  k ) ) )  =  ( 1  / 
( ( exp `  A
) ^ k ) ) ) )
6855, 67syl5ibr 213 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) )
6968ex 424 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) ) )
708, 12, 16, 20, 24, 30, 54, 69zindd 10360 . . 3  |-  ( A  e.  CC  ->  ( N  e.  ZZ  ->  ( exp `  ( A  x.  N ) )  =  ( ( exp `  A ) ^ N
) ) )
7170imp 419 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( ( exp `  A ) ^ N ) )
724, 71eqtr3d 2469 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ` cfv 5445  (class class class)co 6072   CCcc 8977   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984   -ucneg 9281    / cdiv 9666   NNcn 9989   NN0cn0 10210   ZZcz 10271   ^cexp 11370   expce 12652
This theorem is referenced by:  efzval  12691  efgt0  12692  tanval3  12723  demoivre  12789  ef2kpi  20374  efif1olem4  20435  explog  20476  reexplog  20477  relogexp  20478  tanarg  20502  root1eq1  20627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-ico 10911  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-fac 11555  df-bc 11582  df-hash 11607  df-shft 11870  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-limsup 12253  df-clim 12270  df-rlim 12271  df-sum 12468  df-ef 12658
  Copyright terms: Public domain W3C validator