MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efexp Unicode version

Theorem efexp 12375
Description: Exponential function to an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )
Dummy variables  j 
k are mutually distinct and distinct from all other variables.

Proof of Theorem efexp
StepHypRef Expression
1 zcn 10024 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 mulcom 8818 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
31, 2sylan2 462 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
43fveq2d 5489 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( exp `  ( N  x.  A
) ) )
5 oveq2 5827 . . . . . 6  |-  ( j  =  0  ->  ( A  x.  j )  =  ( A  x.  0 ) )
65fveq2d 5489 . . . . 5  |-  ( j  =  0  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  0 ) ) )
7 oveq2 5827 . . . . 5  |-  ( j  =  0  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ 0 ) )
86, 7eqeq12d 2298 . . . 4  |-  ( j  =  0  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) ) )
9 oveq2 5827 . . . . . 6  |-  ( j  =  k  ->  ( A  x.  j )  =  ( A  x.  k ) )
109fveq2d 5489 . . . . 5  |-  ( j  =  k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  k )
) )
11 oveq2 5827 . . . . 5  |-  ( j  =  k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ k
) )
1210, 11eqeq12d 2298 . . . 4  |-  ( j  =  k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  k
) )  =  ( ( exp `  A
) ^ k ) ) )
13 oveq2 5827 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A  x.  j )  =  ( A  x.  ( k  +  1 ) ) )
1413fveq2d 5489 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  ( k  +  1 ) ) ) )
15 oveq2 5827 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ (
k  +  1 ) ) )
1614, 15eqeq12d 2298 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  (
k  +  1 ) ) )  =  ( ( exp `  A
) ^ ( k  +  1 ) ) ) )
17 oveq2 5827 . . . . . 6  |-  ( j  =  -u k  ->  ( A  x.  j )  =  ( A  x.  -u k ) )
1817fveq2d 5489 . . . . 5  |-  ( j  =  -u k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  -u k ) ) )
19 oveq2 5827 . . . . 5  |-  ( j  =  -u k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ -u k
) )
2018, 19eqeq12d 2298 . . . 4  |-  ( j  =  -u k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  -u k
) )  =  ( ( exp `  A
) ^ -u k
) ) )
21 oveq2 5827 . . . . . 6  |-  ( j  =  N  ->  ( A  x.  j )  =  ( A  x.  N ) )
2221fveq2d 5489 . . . . 5  |-  ( j  =  N  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  N )
) )
23 oveq2 5827 . . . . 5  |-  ( j  =  N  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ N
) )
2422, 23eqeq12d 2298 . . . 4  |-  ( j  =  N  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  N
) )  =  ( ( exp `  A
) ^ N ) ) )
25 ef0 12366 . . . . 5  |-  ( exp `  0 )  =  1
26 mul01 8986 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
2726fveq2d 5489 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( exp `  0
) )
28 efcl 12358 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2928exp0d 11233 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  A
) ^ 0 )  =  1 )
3025, 27, 293eqtr4a 2342 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) )
31 oveq1 5826 . . . . . . 7  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
3231adantl 454 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  ( A  x.  k
) )  x.  ( exp `  A ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
33 nn0cn 9970 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  k  e.  CC )
34 ax-1cn 8790 . . . . . . . . . . . 12  |-  1  e.  CC
35 adddi 8821 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
3634, 35mp3an3 1268 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
37 mulid1 8830 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
3837adantr 453 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  1 )  =  A )
3938oveq2d 5835 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  +  ( A  x.  1 ) )  =  ( ( A  x.  k )  +  A ) )
4036, 39eqtrd 2316 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4133, 40sylan2 462 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4241fveq2d 5489 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( exp `  ( ( A  x.  k )  +  A
) ) )
43 mulcl 8816 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  k
)  e.  CC )
4433, 43sylan2 462 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  k
)  e.  CC )
45 simpl 445 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
46 efadd 12369 . . . . . . . . 9  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4744, 45, 46syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4842, 47eqtrd 2316 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4948adantr 453 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
50 expp1 11104 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5128, 50sylan 459 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5251adantr 453 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  A ) ^ (
k  +  1 ) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
5332, 49, 523eqtr4d 2326 . . . . 5  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) )
5453exp31 589 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) ) ) )
55 oveq2 5827 . . . . . 6  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( 1  /  ( exp `  ( A  x.  k )
) )  =  ( 1  /  ( ( exp `  A ) ^ k ) ) )
56 nncn 9749 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  CC )
57 mulneg2 9212 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5856, 57sylan2 462 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5958fveq2d 5489 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( exp `  -u ( A  x.  k ) ) )
6056, 43sylan2 462 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  k
)  e.  CC )
61 efneg 12372 . . . . . . . . 9  |-  ( ( A  x.  k )  e.  CC  ->  ( exp `  -u ( A  x.  k ) )  =  ( 1  /  ( exp `  ( A  x.  k ) ) ) )
6260, 61syl 17 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  -u ( A  x.  k )
)  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
6359, 62eqtrd 2316 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
64 nnnn0 9967 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
65 expneg 11105 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6628, 64, 65syl2an 465 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6763, 66eqeq12d 2298 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k )  <-> 
( 1  /  ( exp `  ( A  x.  k ) ) )  =  ( 1  / 
( ( exp `  A
) ^ k ) ) ) )
6855, 67syl5ibr 214 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) )
6968ex 425 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) ) )
708, 12, 16, 20, 24, 30, 54, 69zindd 10108 . . 3  |-  ( A  e.  CC  ->  ( N  e.  ZZ  ->  ( exp `  ( A  x.  N ) )  =  ( ( exp `  A ) ^ N
) ) )
7170imp 420 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( ( exp `  A ) ^ N ) )
724, 71eqtr3d 2318 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   ` cfv 5221  (class class class)co 5819   CCcc 8730   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737   -ucneg 9033    / cdiv 9418   NNcn 9741   NN0cn0 9960   ZZcz 10019   ^cexp 11098   expce 12337
This theorem is referenced by:  efzval  12376  efgt0  12377  tanval3  12408  demoivre  12474  ef2kpi  19840  efif1olem4  19901  explog  19941  reexplog  19942  relogexp  19943  tanarg  19964  root1eq1  20089
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-pm 6770  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-ico 10656  df-fz 10777  df-fzo 10865  df-fl 10919  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343
  Copyright terms: Public domain W3C validator