MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbllemb Unicode version

Theorem efgcpbllemb 15163
Description: Lemma for efgrelex 15159. Show that  L is an equivalence relation containing all direct extensions of a word, so is closed under  .~. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgcpbllem.1  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) }
Assertion
Ref Expression
efgcpbllemb  |-  ( ( A  e.  W  /\  B  e.  W )  ->  .~  C_  L )
Distinct variable groups:    i, j, A    y, z    t, n, v, w, y, z   
i, m, n, t, v, w, x, M, j    i, k, T, j, m, t, x   
y, i, z, W, j    k, n, v, w, y, z, W, m, t, x    .~ , i,
j, m, t, x, y, z    B, i, j    S, i, j    i, I, j, m, n, t, v, w, x, y, z    D, i, j, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    L( x, y, z, w, v, t, i, j, k, m, n)    M( y, z, k)

Proof of Theorem efgcpbllemb
Dummy variables  a 
b  c  f  g  h  r  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . 3  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . 3  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . 3  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
51, 2, 3, 4efgval2 15132 . 2  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f ) 
C_  [ f ] r ) }
6 efgcpbllem.1 . . . . . . 7  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) }
76relopabi 4893 . . . . . 6  |-  Rel  L
87a1i 10 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  W )  ->  Rel  L )
9 efgred.d . . . . . . . . 9  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
10 efgred.s . . . . . . . . 9  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
111, 2, 3, 4, 9, 10, 6efgcpbllema 15162 . . . . . . . 8  |-  ( f L g  <->  ( f  e.  W  /\  g  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  g ) concat  B
) ) )
1211simp2bi 971 . . . . . . 7  |-  ( f L g  ->  g  e.  W )
1312adantl 452 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  g  e.  W )
1411simp1bi 970 . . . . . . 7  |-  ( f L g  ->  f  e.  W )
1514adantl 452 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  f  e.  W )
161, 2efger 15126 . . . . . . . 8  |-  .~  Er  W
1716a1i 10 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  .~  Er  W )
1811simp3bi 972 . . . . . . . 8  |-  ( f L g  ->  (
( A concat  f ) concat  B )  .~  ( ( A concat  g ) concat  B
) )
1918adantl 452 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  (
( A concat  f ) concat  B )  .~  ( ( A concat  g ) concat  B
) )
2017, 19ersym 6759 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  (
( A concat  g ) concat  B )  .~  ( ( A concat  f ) concat  B
) )
211, 2, 3, 4, 9, 10, 6efgcpbllema 15162 . . . . . 6  |-  ( g L f  <->  ( g  e.  W  /\  f  e.  W  /\  (
( A concat  g ) concat  B )  .~  ( ( A concat  f ) concat  B
) ) )
2213, 15, 20, 21syl3anbrc 1136 . . . . 5  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  g L f )
2314ad2antrl 708 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  f  e.  W
)
241, 2, 3, 4, 9, 10, 6efgcpbllema 15162 . . . . . . . 8  |-  ( g L h  <->  ( g  e.  W  /\  h  e.  W  /\  (
( A concat  g ) concat  B )  .~  ( ( A concat  h ) concat  B
) ) )
2524simp2bi 971 . . . . . . 7  |-  ( g L h  ->  h  e.  W )
2625ad2antll 709 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  h  e.  W
)
2716a1i 10 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  .~  Er  W
)
2818ad2antrl 708 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  ( ( A concat 
f ) concat  B )  .~  ( ( A concat  g
) concat  B ) )
2924simp3bi 972 . . . . . . . 8  |-  ( g L h  ->  (
( A concat  g ) concat  B )  .~  ( ( A concat  h ) concat  B
) )
3029ad2antll 709 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  ( ( A concat 
g ) concat  B )  .~  ( ( A concat  h
) concat  B ) )
3127, 28, 30ertrd 6763 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  ( ( A concat 
f ) concat  B )  .~  ( ( A concat  h
) concat  B ) )
321, 2, 3, 4, 9, 10, 6efgcpbllema 15162 . . . . . 6  |-  ( f L h  <->  ( f  e.  W  /\  h  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  h ) concat  B
) ) )
3323, 26, 31, 32syl3anbrc 1136 . . . . 5  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  f L h )
3416a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  .~  Er  W )
35 fviss 5663 . . . . . . . . . . . . . 14  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
361, 35eqsstri 3284 . . . . . . . . . . . . 13  |-  W  C_ Word  ( I  X.  2o )
37 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  A  e.  W )
3836, 37sseldi 3254 . . . . . . . . . . . 12  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  A  e. Word  ( I  X.  2o ) )
39 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  f  e.  W )
4036, 39sseldi 3254 . . . . . . . . . . . 12  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  f  e. Word  ( I  X.  2o ) )
41 ccatcl 11525 . . . . . . . . . . . 12  |-  ( ( A  e. Word  ( I  X.  2o )  /\  f  e. Word  ( I  X.  2o ) )  -> 
( A concat  f )  e. Word  ( I  X.  2o ) )
4238, 40, 41syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ( A concat  f )  e. Word  (
I  X.  2o ) )
43 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  B  e.  W )
4436, 43sseldi 3254 . . . . . . . . . . 11  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  B  e. Word  ( I  X.  2o ) )
45 ccatcl 11525 . . . . . . . . . . 11  |-  ( ( ( A concat  f )  e. Word  ( I  X.  2o )  /\  B  e. Word 
( I  X.  2o ) )  ->  (
( A concat  f ) concat  B )  e. Word  ( I  X.  2o ) )
4642, 44, 45syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
( A concat  f ) concat  B )  e. Word  ( I  X.  2o ) )
471efgrcl 15123 . . . . . . . . . . . 12  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
4847simprd 449 . . . . . . . . . . 11  |-  ( A  e.  W  ->  W  = Word  ( I  X.  2o ) )
4948ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  W  = Word  ( I  X.  2o ) )
5046, 49eleqtrrd 2435 . . . . . . . . 9  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
( A concat  f ) concat  B )  e.  W )
5134, 50erref 6767 . . . . . . . 8  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
( A concat  f ) concat  B )  .~  ( ( A concat  f ) concat  B
) )
5251ex 423 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( f  e.  W  ->  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) ) )
5352pm4.71d 615 . . . . . 6  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( f  e.  W  <->  ( f  e.  W  /\  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) ) ) )
541, 2, 3, 4, 9, 10, 6efgcpbllema 15162 . . . . . . 7  |-  ( f L f  <->  ( f  e.  W  /\  f  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  f ) concat  B
) ) )
55 df-3an 936 . . . . . . 7  |-  ( ( f  e.  W  /\  f  e.  W  /\  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) )  <->  ( (
f  e.  W  /\  f  e.  W )  /\  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) ) )
56 anidm 625 . . . . . . . 8  |-  ( ( f  e.  W  /\  f  e.  W )  <->  f  e.  W )
5756anbi1i 676 . . . . . . 7  |-  ( ( ( f  e.  W  /\  f  e.  W
)  /\  ( ( A concat  f ) concat  B )  .~  ( ( A concat 
f ) concat  B )
)  <->  ( f  e.  W  /\  ( ( A concat  f ) concat  B
)  .~  ( ( A concat  f ) concat  B ) ) )
5854, 55, 573bitri 262 . . . . . 6  |-  ( f L f  <->  ( f  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  f ) concat  B
) ) )
5953, 58syl6bbr 254 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( f  e.  W  <->  f L f ) )
608, 22, 33, 59iserd 6773 . . . 4  |-  ( ( A  e.  W  /\  B  e.  W )  ->  L  Er  W )
611, 2, 3, 4efgtf 15130 . . . . . . . . . 10  |-  ( f  e.  W  ->  (
( T `  f
)  =  ( a  e.  ( 0 ... ( # `  f
) ) ,  b  e.  ( I  X.  2o )  |->  ( f splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  /\  ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W ) )
6261simprd 449 . . . . . . . . 9  |-  ( f  e.  W  ->  ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W )
6362adantl 452 . . . . . . . 8  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W )
64 ffn 5472 . . . . . . . 8  |-  ( ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W  ->  ( T `  f )  Fn  ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) )
65 ovelrn 6083 . . . . . . . 8  |-  ( ( T `  f )  Fn  ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) )  ->  ( a  e.  ran  ( T `  f )  <->  E. c  e.  ( 0 ... ( # `
 f ) ) E. u  e.  ( I  X.  2o ) a  =  ( c ( T `  f
) u ) ) )
6663, 64, 653syl 18 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
a  e.  ran  ( T `  f )  <->  E. c  e.  ( 0 ... ( # `  f
) ) E. u  e.  ( I  X.  2o ) a  =  ( c ( T `  f ) u ) ) )
67 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
f  e.  W )
6862ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( T `  f
) : ( ( 0 ... ( # `  f ) )  X.  ( I  X.  2o ) ) --> W )
69 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  ( 0 ... ( # `  f
) ) )
70 simprr 733 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  u  e.  ( I  X.  2o ) )
71 fovrn 6077 . . . . . . . . . . 11  |-  ( ( ( T `  f
) : ( ( 0 ... ( # `  f ) )  X.  ( I  X.  2o ) ) --> W  /\  c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) )  ->  (
c ( T `  f ) u )  e.  W )
7268, 69, 70, 71syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c ( T `
 f ) u )  e.  W )
7350adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  f
) concat  B )  e.  W
)
7437adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  A  e.  W )
7536, 74sseldi 3254 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  A  e. Word  ( I  X.  2o ) )
7640adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
f  e. Word  ( I  X.  2o ) )
77 swrdcl 11548 . . . . . . . . . . . . . . . . 17  |-  ( f  e. Word  ( I  X.  2o )  ->  ( f substr  <. 0 ,  c >.
)  e. Word  ( I  X.  2o ) )
7876, 77syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o ) )
79 ccatcl 11525 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o ) )  ->  ( A concat  ( f substr  <. 0 ,  c
>. ) )  e. Word  (
I  X.  2o ) )
8075, 78, 79syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( f substr  <.
0 ,  c >.
) )  e. Word  (
I  X.  2o ) )
813efgmf 15121 . . . . . . . . . . . . . . . . . 18  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
8281ffvelrni 5747 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( I  X.  2o )  ->  ( M `
 u )  e.  ( I  X.  2o ) )
8382ad2antll 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( M `  u
)  e.  ( I  X.  2o ) )
8470, 83s2cld 11615 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  <" u ( M `
 u ) ">  e. Word  ( I  X.  2o ) )
85 ccatcl 11525 . . . . . . . . . . . . . . 15  |-  ( ( ( A concat  ( f substr  <. 0 ,  c >.
) )  e. Word  (
I  X.  2o )  /\  <" u ( M `  u ) ">  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( f substr  <. 0 ,  c >. )
) concat  <" u ( M `  u ) "> )  e. Word 
( I  X.  2o ) )
8680, 84, 85syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> )  e. Word  ( I  X.  2o ) )
87 swrdcl 11548 . . . . . . . . . . . . . . 15  |-  ( f  e. Word  ( I  X.  2o )  ->  ( f substr  <. c ,  ( # `  f ) >. )  e. Word  ( I  X.  2o ) )
8876, 87syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o ) )
8944adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  B  e. Word  ( I  X.  2o ) )
90 ccatass 11532 . . . . . . . . . . . . . 14  |-  ( ( ( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> )  e. Word  ( I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o )  /\  B  e. Word  (
I  X.  2o ) )  ->  ( (
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
9186, 88, 89, 90syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
92 ccatcl 11525 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f substr  <. 0 ,  c >. )  e. Word  ( I  X.  2o )  /\  <" u ( M `  u ) ">  e. Word  (
I  X.  2o ) )  ->  ( (
f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> )  e. Word  ( I  X.  2o ) )
9378, 84, 92syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> )  e. Word  (
I  X.  2o ) )
94 ccatass 11532 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> )  e. Word  (
I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) ) concat  (
f substr  <. c ,  (
# `  f ) >. ) )  =  ( A concat  ( ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) ) )
9575, 93, 88, 94syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
( f substr  <. 0 ,  c >. ) concat  <" u
( M `  u
) "> )
) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( A concat  ( ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) ) )
96 ccatass 11532 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o )  /\  <" u ( M `  u ) ">  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( f substr  <. 0 ,  c >. )
) concat  <" u ( M `  u ) "> )  =  ( A concat  ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> )
) )
9775, 78, 84, 96syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> )  =  ( A concat  (
( f substr  <. 0 ,  c >. ) concat  <" u
( M `  u
) "> )
) )
9897oveq1d 5960 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( ( A concat  (
( f substr  <. 0 ,  c >. ) concat  <" u
( M `  u
) "> )
) concat  ( f substr  <. c ,  ( # `  f
) >. ) ) )
991, 2, 3, 4efgtval 15131 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  W  /\  c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) )  ->  (
c ( T `  f ) u )  =  ( f splice  <. c ,  c ,  <" u ( M `  u ) "> >.
) )
10067, 69, 70, 99syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c ( T `
 f ) u )  =  ( f splice  <. c ,  c , 
<" u ( M `
 u ) "> >. ) )
101 splval 11562 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  W  /\  ( c  e.  ( 0 ... ( # `  f ) )  /\  c  e.  ( 0 ... ( # `  f
) )  /\  <" u ( M `  u ) ">  e. Word  ( I  X.  2o ) ) )  -> 
( f splice  <. c ,  c ,  <" u
( M `  u
) "> >. )  =  ( ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) )
10267, 69, 69, 84, 101syl13anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f splice  <. c ,  c ,  <" u
( M `  u
) "> >. )  =  ( ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) )
103100, 102eqtrd 2390 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c ( T `
 f ) u )  =  ( ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) )
104103oveq2d 5961 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( c
( T `  f
) u ) )  =  ( A concat  (
( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) ) )
10595, 98, 1043eqtr4rd 2401 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( c
( T `  f
) u ) )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) )
106105oveq1d 5960 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
c ( T `  f ) u ) ) concat  B )  =  ( ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B ) )
107 lencl 11517 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e. Word  ( I  X.  2o )  ->  ( # `  A )  e.  NN0 )
10875, 107syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  NN0 )
109 nn0uz 10354 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
110108, 109syl6eleq 2448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  ( ZZ>= `  0
) )
111 elfznn0 10914 . . . . . . . . . . . . . . . . . 18  |-  ( c  e.  ( 0 ... ( # `  f
) )  ->  c  e.  NN0 )
112111ad2antrl 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  NN0 )
113 uzaddcl 10367 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  A
)  e.  ( ZZ>= ` 
0 )  /\  c  e.  NN0 )  ->  (
( # `  A )  +  c )  e.  ( ZZ>= `  0 )
)
114110, 112, 113syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  ( ZZ>= `  0
) )
11542adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  f )  e. Word  ( I  X.  2o ) )
116 ccatlen 11526 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A concat  f )  e. Word  ( I  X.  2o )  /\  B  e. Word 
( I  X.  2o ) )  ->  ( # `
 ( ( A concat 
f ) concat  B )
)  =  ( (
# `  ( A concat  f ) )  +  (
# `  B )
) )
117115, 89, 116syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( ( A concat  f ) concat  B
) )  =  ( ( # `  ( A concat  f ) )  +  ( # `  B
) ) )
118 ccatlen 11526 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e. Word  ( I  X.  2o )  /\  f  e. Word  ( I  X.  2o ) )  -> 
( # `  ( A concat 
f ) )  =  ( ( # `  A
)  +  ( # `  f ) ) )
11975, 76, 118syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( A concat 
f ) )  =  ( ( # `  A
)  +  ( # `  f ) ) )
120 elfzuz3 10887 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  e.  ( 0 ... ( # `  f
) )  ->  ( # `
 f )  e.  ( ZZ>= `  c )
)
121120ad2antrl 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  ( ZZ>= `  c
) )
122108nn0zd 10207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  ZZ )
123 eluzadd 10348 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( # `  f
)  e.  ( ZZ>= `  c )  /\  ( # `
 A )  e.  ZZ )  ->  (
( # `  f )  +  ( # `  A
) )  e.  (
ZZ>= `  ( c  +  ( # `  A
) ) ) )
124121, 122, 123syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  f
)  +  ( # `  A ) )  e.  ( ZZ>= `  ( c  +  ( # `  A
) ) ) )
125 lencl 11517 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  e. Word  ( I  X.  2o )  ->  ( # `  f )  e.  NN0 )
12676, 125syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  NN0 )
127126nn0cnd 10112 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  CC )
128108nn0cnd 10112 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  CC )
129127, 128addcomd 9104 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  f
)  +  ( # `  A ) )  =  ( ( # `  A
)  +  ( # `  f ) ) )
130112nn0cnd 10112 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  CC )
131130, 128addcomd 9104 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c  +  (
# `  A )
)  =  ( (
# `  A )  +  c ) )
132131fveq2d 5612 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ZZ>= `  ( c  +  ( # `  A
) ) )  =  ( ZZ>= `  ( ( # `
 A )  +  c ) ) )
133129, 132eleq12d 2426 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  f )  +  (
# `  A )
)  e.  ( ZZ>= `  ( c  +  (
# `  A )
) )  <->  ( ( # `
 A )  +  ( # `  f
) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) ) )
134124, 133mpbid 201 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  ( # `  f ) )  e.  ( ZZ>= `  ( ( # `
 A )  +  c ) ) )
135119, 134eqeltrd 2432 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( A concat 
f ) )  e.  ( ZZ>= `  ( ( # `
 A )  +  c ) ) )
136 lencl 11517 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e. Word  ( I  X.  2o )  ->  ( # `  B )  e.  NN0 )
13789, 136syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  B )  e.  NN0 )
138 uzaddcl 10367 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  ( A concat  f ) )  e.  ( ZZ>= `  ( ( # `
 A )  +  c ) )  /\  ( # `  B )  e.  NN0 )  -> 
( ( # `  ( A concat  f ) )  +  ( # `  B
) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) )
139135, 137, 138syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  ( A concat  f ) )  +  ( # `  B
) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) )
140117, 139eqeltrd 2432 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( ( A concat  f ) concat  B
) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) )
141 elfzuzb 10884 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  A
)  +  c )  e.  ( 0 ... ( # `  (
( A concat  f ) concat  B ) ) )  <->  ( (
( # `  A )  +  c )  e.  ( ZZ>= `  0 )  /\  ( # `  (
( A concat  f ) concat  B ) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) ) )
142114, 140, 141sylanbrc 645 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  ( 0 ... ( # `  (
( A concat  f ) concat  B ) ) ) )
1431, 2, 3, 4efgtval 15131 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A concat  f
) concat  B )  e.  W  /\  ( ( # `  A
)  +  c )  e.  ( 0 ... ( # `  (
( A concat  f ) concat  B ) ) )  /\  u  e.  ( I  X.  2o ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  =  ( ( ( A concat  f ) concat  B ) splice  <. ( (
# `  A )  +  c ) ,  ( ( # `  A
)  +  c ) ,  <" u ( M `  u ) "> >. )
)
14473, 142, 70, 143syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  =  ( ( ( A concat  f ) concat  B ) splice  <. ( (
# `  A )  +  c ) ,  ( ( # `  A
)  +  c ) ,  <" u ( M `  u ) "> >. )
)
145 wrd0 11514 . . . . . . . . . . . . . . . 16  |-  (/)  e. Word  (
I  X.  2o )
146145a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  (/) 
e. Word  ( I  X.  2o ) )
147 ccatcl 11525 . . . . . . . . . . . . . . . 16  |-  ( ( ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o )  /\  B  e. Word  (
I  X.  2o ) )  ->  ( (
f substr  <. c ,  (
# `  f ) >. ) concat  B )  e. Word 
( I  X.  2o ) )
14888, 89, 147syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. c ,  ( # `  f
) >. ) concat  B )  e. Word  ( I  X.  2o ) )
149 ccatrid 11531 . . . . . . . . . . . . . . . . . 18  |-  ( ( A concat  ( f substr  <. 0 ,  c >. ) )  e. Word  ( I  X.  2o )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  (/) )  =  ( A concat  ( f substr  <. 0 ,  c >.
) ) )
15080, 149syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  (/) )  =  ( A concat  ( f substr  <. 0 ,  c >.
) ) )
151150oveq1d 5960 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (/) ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
)  =  ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  ( ( f substr  <. c ,  ( # `  f ) >. ) concat  B ) ) )
152 ccatass 11532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A concat  ( f substr  <. 0 ,  c >.
) )  e. Word  (
I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o )  /\  B  e. Word  (
I  X.  2o ) )  ->  ( (
( A concat  ( f substr  <.
0 ,  c >.
) ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) concat  B )  =  ( ( A concat  ( f substr  <. 0 ,  c >.
) ) concat  ( (
f substr  <. c ,  (
# `  f ) >. ) concat  B ) ) )
15380, 88, 89, 152syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
154 ccatass 11532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( f substr  <. 0 ,  c >. )
) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( A concat  ( ( f substr  <. 0 ,  c
>. ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) ) )
15575, 78, 88, 154syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  ( f substr  <. c ,  ( # `  f ) >. )
)  =  ( A concat 
( ( f substr  <. 0 ,  c >. ) concat 
( f substr  <. c ,  ( # `  f
) >. ) ) ) )
156112, 109syl6eleq 2448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  ( ZZ>= ` 
0 ) )
157 eluzfz1 10895 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... c
) )
158156, 157syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
0  e.  ( 0 ... c ) )
159126, 109syl6eleq 2448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  ( ZZ>= `  0
) )
160 eluzfz2 10896 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  f )  e.  ( ZZ>= `  0 )  ->  ( # `  f
)  e.  ( 0 ... ( # `  f
) ) )
161159, 160syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  ( 0 ... ( # `  f
) ) )
162 ccatswrd 11555 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  e. Word  ( I  X.  2o )  /\  ( 0  e.  ( 0 ... c )  /\  c  e.  ( 0 ... ( # `  f ) )  /\  ( # `  f )  e.  ( 0 ... ( # `  f
) ) ) )  ->  ( ( f substr  <. 0 ,  c >.
) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( f substr  <. 0 ,  ( # `  f
) >. ) )
16376, 158, 69, 161, 162syl13anc 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. 0 ,  c >. ) concat 
( f substr  <. c ,  ( # `  f
) >. ) )  =  ( f substr  <. 0 ,  ( # `  f
) >. ) )
164 swrdid 11554 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  e. Word  ( I  X.  2o )  ->  ( f substr  <. 0 ,  ( # `  f ) >. )  =  f )
16576, 164syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f substr  <. 0 ,  ( # `  f
) >. )  =  f )
166163, 165eqtrd 2390 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. 0 ,  c >. ) concat 
( f substr  <. c ,  ( # `  f
) >. ) )  =  f )
167166oveq2d 5961 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( (
f substr  <. 0 ,  c
>. ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) )  =  ( A concat  f ) )
168155, 167eqtrd 2390 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  ( f substr  <. c ,  ( # `  f ) >. )
)  =  ( A concat 
f ) )
169168oveq1d 5960 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( A concat 
f ) concat  B )
)
170151, 153, 1693eqtr2rd 2397 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  f
) concat  B )  =  ( ( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  (/) ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
171 ccatlen 11526 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o ) )  ->  ( # `  ( A concat  ( f substr  <. 0 ,  c >. )
) )  =  ( ( # `  A
)  +  ( # `  ( f substr  <. 0 ,  c >. )
) ) )
17275, 78, 171syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( A concat 
( f substr  <. 0 ,  c >. ) ) )  =  ( ( # `  A )  +  (
# `  ( f substr  <.
0 ,  c >.
) ) ) )
173 swrd0len 11551 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e. Word  ( I  X.  2o )  /\  c  e.  ( 0 ... ( # `  f
) ) )  -> 
( # `  ( f substr  <. 0 ,  c >.
) )  =  c )
17476, 69, 173syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( f substr  <. 0 ,  c >.
) )  =  c )
175174oveq2d 5961 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  ( # `  ( f substr  <. 0 ,  c >. )
) )  =  ( ( # `  A
)  +  c ) )
176172, 175eqtr2d 2391 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  =  ( # `  ( A concat  ( f substr  <. 0 ,  c >. )
) ) )
177 hash0 11448 . . . . . . . . . . . . . . . . 17  |-  ( # `  (/) )  =  0
178177oveq2i 5956 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  A
)  +  c )  +  ( # `  (/) ) )  =  ( ( (
# `  A )  +  c )  +  0 )
179108, 112nn0addcld 10114 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  NN0 )
180179nn0cnd 10112 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  CC )
181180addid1d 9102 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c )  +  0 )  =  ( ( # `  A )  +  c ) )
182178, 181syl5req 2403 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  =  ( ( (
# `  A )  +  c )  +  ( # `  (/) ) ) )
18380, 146, 148, 84, 170, 176, 182splval2 11568 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
f ) concat  B ) splice  <.
( ( # `  A
)  +  c ) ,  ( ( # `  A )  +  c ) ,  <" u
( M `  u
) "> >. )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
184144, 183eqtrd 2390 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >.
) ) concat  <" u
( M `  u
) "> ) concat  ( ( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
18591, 106, 1843eqtr4d 2400 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
c ( T `  f ) u ) ) concat  B )  =  ( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u ) )
1861, 2, 3, 4efgtf 15130 . . . . . . . . . . . . . . 15  |-  ( ( ( A concat  f ) concat  B )  e.  W  ->  ( ( T `  ( ( A concat  f
) concat  B ) )  =  ( a  e.  ( 0 ... ( # `  ( ( A concat  f
) concat  B ) ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( ( ( A concat 
f ) concat  B ) splice  <.
a ,  a , 
<" b ( M `
 b ) "> >. ) )  /\  ( T `  ( ( A concat  f ) concat  B
) ) : ( ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) --> W ) )
187186simprd 449 . . . . . . . . . . . . . 14  |-  ( ( ( A concat  f ) concat  B )  e.  W  ->  ( T `  (
( A concat  f ) concat  B ) ) : ( ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) --> W )
188 ffn 5472 . . . . . . . . . . . . . 14  |-  ( ( T `  ( ( A concat  f ) concat  B
) ) : ( ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) --> W  ->  ( T `  ( ( A concat  f ) concat  B ) )  Fn  ( ( 0 ... ( # `  ( ( A concat  f
) concat  B ) ) )  X.  ( I  X.  2o ) ) )
18973, 187, 1883syl 18 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( T `  (
( A concat  f ) concat  B ) )  Fn  (
( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) )
190 fnovrn 6082 . . . . . . . . . . . . 13  |-  ( ( ( T `  (
( A concat  f ) concat  B ) )  Fn  (
( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) )  /\  ( (
# `  A )  +  c )  e.  ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  /\  u  e.  ( I  X.  2o ) )  ->  (
( ( # `  A
)  +  c ) ( T `  (
( A concat  f ) concat  B ) ) u )  e.  ran  ( T `
 ( ( A concat 
f ) concat  B )
) )
191189, 142, 70, 190syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  e.  ran  ( T `  ( ( A concat  f ) concat  B ) ) )
192185, 191eqeltrd 2432 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
c ( T `  f ) u ) ) concat  B )  e. 
ran  ( T `  ( ( A concat  f
) concat  B ) ) )
1931, 2, 3, 4efgi2 15133 . . . . . . . . . . 11  |-  ( ( ( ( A concat  f
) concat  B )  e.  W  /\  ( ( A concat  (
c ( T `  f ) u ) ) concat  B )  e. 
ran  ( T `  ( ( A concat  f
) concat  B ) ) )  ->  ( ( A concat 
f ) concat  B )  .~  ( ( A concat  (
c ( T `  f ) u ) ) concat  B ) )
19473, 192, 193syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  f
) concat  B )  .~  (
( A concat  ( c
( T `  f
) u ) ) concat  B ) )
1951, 2, 3, 4, 9, 10, 6efgcpbllema 15162 . . . . . . . . . 10  |-  ( f L ( c ( T `  f ) u )  <->  ( f  e.  W  /\  (
c ( T `  f ) u )  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  ( c ( T `  f ) u ) ) concat  B
) ) )
19667, 72, 194, 195syl3anbrc 1136 . . . . . . . . 9  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
f L ( c ( T `  f
) u ) )
197 vex 2867 . . . . . . . . . . 11  |-  a  e. 
_V
198 vex 2867 . . . . . . . . . . 11  |-  f  e. 
_V
199197, 198elec 6786 . . . . . . . . . 10  |-  ( a  e.  [ f ] L  <->  f L a )
200 breq2 4108 . . . . . . . . . 10  |-  ( a  =  ( c ( T `  f ) u )  ->  (
f L a  <->  f L
( c ( T `
 f ) u ) ) )
201199, 200syl5bb 248 . . . . . . . . 9  |-  ( a  =  ( c ( T `  f ) u )  ->  (
a  e.  [ f ] L  <->  f L
( c ( T `
 f ) u ) ) )
202196, 201syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( a  =  ( c ( T `  f ) u )  ->  a  e.  [
f ] L ) )
203202rexlimdvva 2750 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ( E. c  e.  (
0 ... ( # `  f
) ) E. u  e.  ( I  X.  2o ) a  =  ( c ( T `  f ) u )  ->  a  e.  [
f ] L ) )
20466, 203sylbid 206 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
a  e.  ran  ( T `  f )  ->  a  e.  [ f ] L ) )
205204ssrdv 3261 . . . . 5  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ran  ( T `  f ) 
C_  [ f ] L )
206205ralrimiva 2702 . . . 4  |-  ( ( A  e.  W  /\  B  e.  W )  ->  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] L )
207 fvex 5622 . . . . . . 7  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
2081, 207eqeltri 2428 . . . . . 6  |-  W  e. 
_V
209 erex 6771 . . . . . 6  |-  ( L  Er  W  ->  ( W  e.  _V  ->  L  e.  _V ) )
21060, 208, 209ee10 1376 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  W )  ->  L  e.  _V )
211 ereq1 6754 . . . . . . 7  |-  ( r  =  L  ->  (
r  Er  W  <->  L  Er  W ) )
212 eceq2 6784 . . . . . . . . 9  |-  ( r  =  L  ->  [ f ] r  =  [
f ] L )
213212sseq2d 3282 . . . . . . . 8  |-  ( r  =  L  ->  ( ran  ( T `  f
)  C_  [ f ] r  <->  ran  ( T `
 f )  C_  [ f ] L ) )
214213ralbidv 2639 . . . . . . 7  |-  ( r  =  L  ->  ( A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r  <->  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) )
215211, 214anbi12d 691 . . . . . 6  |-  ( r  =  L  ->  (
( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r )  <->  ( L  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) ) )
216215elabg 2991 . . . . 5  |-  ( L  e.  _V  ->  ( L  e.  { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] r ) }  <->  ( L  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) ) )
217210, 216syl 15 . . . 4  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( L  e.  {
r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f ) 
C_  [ f ] r ) }  <->  ( L  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) ) )
21860, 206, 217mpbir2and 888 . . 3  |-  ( ( A  e.  W  /\  B  e.  W )  ->  L  e.  { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] r ) } )
219 intss1 3958 . . 3  |-  ( L  e.  { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r ) }  ->  |^| { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r ) } 
C_  L )
220218, 219syl 15 . 2  |-  ( ( A  e.  W  /\  B  e.  W )  ->  |^| { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r ) } 
C_  L )
2215, 220syl5eqss 3298 1  |-  ( ( A  e.  W  /\  B  e.  W )  ->  .~  C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   {cab 2344   A.wral 2619   E.wrex 2620   {crab 2623   _Vcvv 2864    \ cdif 3225    C_ wss 3228   (/)c0 3531   {csn 3716   {cpr 3717   <.cop 3719   <.cotp 3720   |^|cint 3943   U_ciun 3986   class class class wbr 4104   {copab 4157    e. cmpt 4158    _I cid 4386    X. cxp 4769   ran crn 4772   Rel wrel 4776    Fn wfn 5332   -->wf 5333   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   1oc1o 6559   2oc2o 6560    Er wer 6744   [cec 6745   0cc0 8827   1c1 8828    + caddc 8830    - cmin 9127   NN0cn0 10057   ZZcz 10116   ZZ>=cuz 10322   ...cfz 10874  ..^cfzo 10962   #chash 11430  Word cword 11499   concat cconcat 11500   substr csubstr 11502   splice csplice 11503   <"cs2 11587   ~FG cefg 15114
This theorem is referenced by:  efgcpbl  15164
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-ot 3726  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-ec 6749  df-map 6862  df-pm 6863  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-fzo 10963  df-hash 11431  df-word 11505  df-concat 11506  df-s1 11507  df-substr 11508  df-splice 11509  df-s2 11594  df-efg 15117
  Copyright terms: Public domain W3C validator