MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmnvl Structured version   Unicode version

Theorem efgmnvl 15348
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypothesis
Ref Expression
efgmval.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
Assertion
Ref Expression
efgmnvl  |-  ( A  e.  ( I  X.  2o )  ->  ( M `
 ( M `  A ) )  =  A )
Distinct variable group:    y, z, I
Allowed substitution hints:    A( y, z)    M( y, z)

Proof of Theorem efgmnvl
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 4898 . 2  |-  ( A  e.  ( I  X.  2o )  <->  E. a  e.  I  E. b  e.  2o  A  =  <. a ,  b >. )
2 efgmval.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
32efgmval 15346 . . . . . . 7  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( a M b )  =  <. a ,  ( 1o  \ 
b ) >. )
43fveq2d 5734 . . . . . 6  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( M `  (
a M b ) )  =  ( M `
 <. a ,  ( 1o  \  b )
>. ) )
5 df-ov 6086 . . . . . 6  |-  ( a M ( 1o  \ 
b ) )  =  ( M `  <. a ,  ( 1o  \ 
b ) >. )
64, 5syl6eqr 2488 . . . . 5  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( M `  (
a M b ) )  =  ( a M ( 1o  \ 
b ) ) )
7 2oconcl 6749 . . . . . 6  |-  ( b  e.  2o  ->  ( 1o  \  b )  e.  2o )
82efgmval 15346 . . . . . 6  |-  ( ( a  e.  I  /\  ( 1o  \  b
)  e.  2o )  ->  ( a M ( 1o  \  b
) )  =  <. a ,  ( 1o  \ 
( 1o  \  b
) ) >. )
97, 8sylan2 462 . . . . 5  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( a M ( 1o  \  b ) )  =  <. a ,  ( 1o  \ 
( 1o  \  b
) ) >. )
10 1on 6733 . . . . . . . . . . 11  |-  1o  e.  On
1110onordi 4688 . . . . . . . . . 10  |-  Ord  1o
12 ordtr 4597 . . . . . . . . . 10  |-  ( Ord 
1o  ->  Tr  1o )
13 trsucss 4669 . . . . . . . . . 10  |-  ( Tr  1o  ->  ( b  e.  suc  1o  ->  b  C_  1o ) )
1411, 12, 13mp2b 10 . . . . . . . . 9  |-  ( b  e.  suc  1o  ->  b 
C_  1o )
15 df-2o 6727 . . . . . . . . 9  |-  2o  =  suc  1o
1614, 15eleq2s 2530 . . . . . . . 8  |-  ( b  e.  2o  ->  b  C_  1o )
1716adantl 454 . . . . . . 7  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  b  C_  1o )
18 dfss4 3577 . . . . . . 7  |-  ( b 
C_  1o  <->  ( 1o  \ 
( 1o  \  b
) )  =  b )
1917, 18sylib 190 . . . . . 6  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( 1o  \  ( 1o  \  b ) )  =  b )
2019opeq2d 3993 . . . . 5  |-  ( ( a  e.  I  /\  b  e.  2o )  -> 
<. a ,  ( 1o 
\  ( 1o  \ 
b ) ) >.  =  <. a ,  b
>. )
216, 9, 203eqtrd 2474 . . . 4  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( M `  (
a M b ) )  =  <. a ,  b >. )
22 fveq2 5730 . . . . . . 7  |-  ( A  =  <. a ,  b
>.  ->  ( M `  A )  =  ( M `  <. a ,  b >. )
)
23 df-ov 6086 . . . . . . 7  |-  ( a M b )  =  ( M `  <. a ,  b >. )
2422, 23syl6eqr 2488 . . . . . 6  |-  ( A  =  <. a ,  b
>.  ->  ( M `  A )  =  ( a M b ) )
2524fveq2d 5734 . . . . 5  |-  ( A  =  <. a ,  b
>.  ->  ( M `  ( M `  A ) )  =  ( M `
 ( a M b ) ) )
26 id 21 . . . . 5  |-  ( A  =  <. a ,  b
>.  ->  A  =  <. a ,  b >. )
2725, 26eqeq12d 2452 . . . 4  |-  ( A  =  <. a ,  b
>.  ->  ( ( M `
 ( M `  A ) )  =  A  <->  ( M `  ( a M b ) )  =  <. a ,  b >. )
)
2821, 27syl5ibrcom 215 . . 3  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( A  =  <. a ,  b >.  ->  ( M `  ( M `  A ) )  =  A ) )
2928rexlimivv 2837 . 2  |-  ( E. a  e.  I  E. b  e.  2o  A  =  <. a ,  b
>.  ->  ( M `  ( M `  A ) )  =  A )
301, 29sylbi 189 1  |-  ( A  e.  ( I  X.  2o )  ->  ( M `
 ( M `  A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708    \ cdif 3319    C_ wss 3322   <.cop 3819   Tr wtr 4304   Ord word 4582   suc csuc 4585    X. cxp 4878   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   1oc1o 6719   2oc2o 6720
This theorem is referenced by:  efginvrel1  15362  efgredlemc  15379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-suc 4589  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-iota 5420  df-fun 5458  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1o 6726  df-2o 6727
  Copyright terms: Public domain W3C validator