MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopn Structured version   Unicode version

Theorem efopn 20580
Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
efopn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
efopn  |-  ( S  e.  J  ->  ( exp " S )  e.  J )

Proof of Theorem efopn
Dummy variables  w  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efopn.j . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
21cnfldtopon 18848 . . . . . . 7  |-  J  e.  (TopOn `  CC )
3 toponss 17025 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  S  e.  J )  ->  S  C_  CC )
42, 3mpan 653 . . . . . 6  |-  ( S  e.  J  ->  S  C_  CC )
54sselda 3334 . . . . 5  |-  ( ( S  e.  J  /\  x  e.  S )  ->  x  e.  CC )
6 cnxmet 18838 . . . . . 6  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
7 pire 20403 . . . . . . . 8  |-  pi  e.  RR
8 pipos 20404 . . . . . . . 8  |-  0  <  pi
97, 8elrpii 10646 . . . . . . 7  |-  pi  e.  RR+
101cnfldtopn 18847 . . . . . . . 8  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
1110mopni3 18555 . . . . . . 7  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  S  e.  J  /\  x  e.  S
)  /\  pi  e.  RR+ )  ->  E. r  e.  RR+  ( r  < 
pi  /\  ( x
( ball `  ( abs  o. 
-  ) ) r )  C_  S )
)
129, 11mpan2 654 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  S  e.  J  /\  x  e.  S )  ->  E. r  e.  RR+  ( r  <  pi  /\  ( x ( ball `  ( abs  o.  -  ) ) r ) 
C_  S ) )
136, 12mp3an1 1267 . . . . 5  |-  ( ( S  e.  J  /\  x  e.  S )  ->  E. r  e.  RR+  ( r  <  pi  /\  ( x ( ball `  ( abs  o.  -  ) ) r ) 
C_  S ) )
14 imass2 5269 . . . . . . . 8  |-  ( ( x ( ball `  ( abs  o.  -  ) ) r )  C_  S  ->  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  C_  ( exp " S ) )
15 imassrn 5245 . . . . . . . . . . . . . 14  |-  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  C_  ran  exp
16 eff 12715 . . . . . . . . . . . . . . 15  |-  exp : CC
--> CC
17 frn 5626 . . . . . . . . . . . . . . 15  |-  ( exp
: CC --> CC  ->  ran 
exp  C_  CC )
1816, 17ax-mp 5 . . . . . . . . . . . . . 14  |-  ran  exp  C_  CC
1915, 18sstri 3343 . . . . . . . . . . . . 13  |-  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  C_  CC
20 sseqin2 3545 . . . . . . . . . . . . 13  |-  ( ( exp " ( x ( ball `  ( abs  o.  -  ) ) r ) )  C_  CC 
<->  ( CC  i^i  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) ) )  =  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) ) )
2119, 20mpbi 201 . . . . . . . . . . . 12  |-  ( CC 
i^i  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) ) )  =  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )
22 rpxr 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( r  e.  RR+  ->  r  e. 
RR* )
23 blssm 18479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  x  e.  CC  /\  r  e.  RR* )  ->  (
x ( ball `  ( abs  o.  -  ) ) r )  C_  CC )
246, 23mp3an1 1267 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  CC  /\  r  e.  RR* )  -> 
( x ( ball `  ( abs  o.  -  ) ) r ) 
C_  CC )
2522, 24sylan2 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  CC  /\  r  e.  RR+ )  -> 
( x ( ball `  ( abs  o.  -  ) ) r ) 
C_  CC )
2625ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  (
x ( ball `  ( abs  o.  -  ) ) r )  C_  CC )
2726sselda 3334 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  y  e.  CC )
28 simp-4l 744 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  x  e.  CC )
2927, 28subcld 9442 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( y  -  x )  e.  CC )
3029subid1d 9431 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
y  -  x )  -  0 )  =  ( y  -  x
) )
3130fveq2d 5761 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( abs `  ( ( y  -  x )  -  0 ) )  =  ( abs `  ( y  -  x ) ) )
32 0cn 9115 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  CC
33 eqid 2442 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3433cnmetdval 18836 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  -  x
)  e.  CC  /\  0  e.  CC )  ->  ( ( y  -  x ) ( abs 
o.  -  ) 0 )  =  ( abs `  ( ( y  -  x )  -  0 ) ) )
3529, 32, 34sylancl 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
y  -  x ) ( abs  o.  -  ) 0 )  =  ( abs `  (
( y  -  x
)  -  0 ) ) )
3633cnmetdval 18836 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y ( abs 
o.  -  ) x
)  =  ( abs `  ( y  -  x
) ) )
3727, 28, 36syl2anc 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( y
( abs  o.  -  )
x )  =  ( abs `  ( y  -  x ) ) )
3831, 35, 373eqtr4d 2484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
y  -  x ) ( abs  o.  -  ) 0 )  =  ( y ( abs 
o.  -  ) x
) )
39 simpr 449 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )
406a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( abs  o. 
-  )  e.  ( * Met `  CC ) )
41 simpllr 737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  r  e.  RR+ )
4241adantr 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  r  e.  RR+ )
4342rpxrd 10680 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  r  e.  RR* )
44 elbl3 18453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  r  e.  RR* )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( y  e.  ( x ( ball `  ( abs  o.  -  ) ) r )  <->  ( y
( abs  o.  -  )
x )  <  r
) )
4540, 43, 28, 27, 44syl22anc 1186 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( y  e.  ( x ( ball `  ( abs  o.  -  ) ) r )  <-> 
( y ( abs 
o.  -  ) x
)  <  r )
)
4639, 45mpbid 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( y
( abs  o.  -  )
x )  <  r
)
4738, 46eqbrtrd 4257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
y  -  x ) ( abs  o.  -  ) 0 )  < 
r )
4832a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  0  e.  CC )
49 elbl3 18453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  r  e.  RR* )  /\  ( 0  e.  CC  /\  ( y  -  x )  e.  CC ) )  -> 
( ( y  -  x )  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r )  <->  ( (
y  -  x ) ( abs  o.  -  ) 0 )  < 
r ) )
5040, 43, 48, 29, 49syl22anc 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
y  -  x )  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) r )  <->  ( ( y  -  x ) ( abs  o.  -  )
0 )  <  r
) )
5147, 50mpbird 225 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( y  -  x )  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )
52 efsub 12732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( exp `  (
y  -  x ) )  =  ( ( exp `  y )  /  ( exp `  x
) ) )
5327, 28, 52syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( exp `  ( y  -  x
) )  =  ( ( exp `  y
)  /  ( exp `  x ) ) )
54 fveq2 5757 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  ( y  -  x )  ->  ( exp `  w )  =  ( exp `  (
y  -  x ) ) )
5554eqeq1d 2450 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( y  -  x )  ->  (
( exp `  w
)  =  ( ( exp `  y )  /  ( exp `  x
) )  <->  ( exp `  ( y  -  x
) )  =  ( ( exp `  y
)  /  ( exp `  x ) ) ) )
5655rspcev 3058 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  -  x
)  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r )  /\  ( exp `  ( y  -  x ) )  =  ( ( exp `  y
)  /  ( exp `  x ) ) )  ->  E. w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w )  =  ( ( exp `  y
)  /  ( exp `  x ) ) )
5751, 53, 56syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  E. w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w
)  =  ( ( exp `  y )  /  ( exp `  x
) ) )
58 oveq1 6117 . . . . . . . . . . . . . . . . . . 19  |-  ( ( exp `  y )  =  z  ->  (
( exp `  y
)  /  ( exp `  x ) )  =  ( z  /  ( exp `  x ) ) )
5958eqeq2d 2453 . . . . . . . . . . . . . . . . . 18  |-  ( ( exp `  y )  =  z  ->  (
( exp `  w
)  =  ( ( exp `  y )  /  ( exp `  x
) )  <->  ( exp `  w )  =  ( z  /  ( exp `  x ) ) ) )
6059rexbidv 2732 . . . . . . . . . . . . . . . . 17  |-  ( ( exp `  y )  =  z  ->  ( E. w  e.  (
0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w )  =  ( ( exp `  y
)  /  ( exp `  x ) )  <->  E. w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w
)  =  ( z  /  ( exp `  x
) ) ) )
6157, 60syl5ibcom 213 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( ( exp `  y )  =  z  ->  E. w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w
)  =  ( z  /  ( exp `  x
) ) ) )
6261rexlimdva 2836 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  ( E. y  e.  (
x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y )  =  z  ->  E. w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w )  =  ( z  /  ( exp `  x ) ) ) )
63 eqcom 2444 . . . . . . . . . . . . . . . . . 18  |-  ( ( exp `  w )  =  ( z  / 
( exp `  x
) )  <->  ( z  /  ( exp `  x
) )  =  ( exp `  w ) )
64 simplr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  z  e.  CC )
65 simp-4l 744 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  x  e.  CC )
66 efcl 12716 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
6765, 66syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( exp `  x )  e.  CC )
6841rpxrd 10680 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  r  e.  RR* )
69 blssm 18479 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  r  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) r )  C_  CC )
706, 32, 69mp3an12 1270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( r  e.  RR*  ->  ( 0 ( ball `  ( abs  o.  -  ) ) r )  C_  CC )
7168, 70syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  (
0 ( ball `  ( abs  o.  -  ) ) r )  C_  CC )
7271sselda 3334 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  w  e.  CC )
73 efcl 12716 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  CC  ->  ( exp `  w )  e.  CC )
7472, 73syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( exp `  w )  e.  CC )
75 efne0 12729 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  ( exp `  x )  =/=  0 )
7665, 75syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( exp `  x )  =/=  0
)
7764, 67, 74, 76divmuld 9843 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
z  /  ( exp `  x ) )  =  ( exp `  w
)  <->  ( ( exp `  x )  x.  ( exp `  w ) )  =  z ) )
7863, 77syl5bb 250 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( ( exp `  w )  =  ( z  /  ( exp `  x ) )  <-> 
( ( exp `  x
)  x.  ( exp `  w ) )  =  z ) )
7965, 72pncan2d 9444 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
x  +  w )  -  x )  =  w )
8072subid1d 9431 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( w  -  0 )  =  w )
8179, 80eqtr4d 2477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
x  +  w )  -  x )  =  ( w  -  0 ) )
8281fveq2d 5761 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( abs `  ( ( x  +  w )  -  x
) )  =  ( abs `  ( w  -  0 ) ) )
8365, 72addcld 9138 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( x  +  w )  e.  CC )
8433cnmetdval 18836 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  +  w
)  e.  CC  /\  x  e.  CC )  ->  ( ( x  +  w ) ( abs 
o.  -  ) x
)  =  ( abs `  ( ( x  +  w )  -  x
) ) )
8583, 65, 84syl2anc 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
x  +  w ) ( abs  o.  -  ) x )  =  ( abs `  (
( x  +  w
)  -  x ) ) )
8633cnmetdval 18836 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( w  e.  CC  /\  0  e.  CC )  ->  ( w ( abs 
o.  -  ) 0 )  =  ( abs `  ( w  -  0 ) ) )
8772, 32, 86sylancl 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( w
( abs  o.  -  )
0 )  =  ( abs `  ( w  -  0 ) ) )
8882, 85, 873eqtr4d 2484 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
x  +  w ) ( abs  o.  -  ) x )  =  ( w ( abs 
o.  -  ) 0 ) )
89 simpr 449 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )
906a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( abs  o. 
-  )  e.  ( * Met `  CC ) )
9141adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  r  e.  RR+ )
9291rpxrd 10680 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  r  e.  RR* )
9332a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  0  e.  CC )
94 elbl3 18453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  r  e.  RR* )  /\  ( 0  e.  CC  /\  w  e.  CC ) )  -> 
( w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r )  <->  ( w
( abs  o.  -  )
0 )  <  r
) )
9590, 92, 93, 72, 94syl22anc 1186 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r )  <-> 
( w ( abs 
o.  -  ) 0 )  <  r ) )
9689, 95mpbid 203 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( w
( abs  o.  -  )
0 )  <  r
)
9788, 96eqbrtrd 4257 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
x  +  w ) ( abs  o.  -  ) x )  < 
r )
98 elbl3 18453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  r  e.  RR* )  /\  ( x  e.  CC  /\  ( x  +  w )  e.  CC ) )  -> 
( ( x  +  w )  e.  ( x ( ball `  ( abs  o.  -  ) ) r )  <->  ( (
x  +  w ) ( abs  o.  -  ) x )  < 
r ) )
9990, 92, 65, 83, 98syl22anc 1186 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
x  +  w )  e.  ( x (
ball `  ( abs  o. 
-  ) ) r )  <->  ( ( x  +  w ) ( abs  o.  -  )
x )  <  r
) )
10097, 99mpbird 225 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( x  +  w )  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )
101 efadd 12727 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( exp `  (
x  +  w ) )  =  ( ( exp `  x )  x.  ( exp `  w
) ) )
10265, 72, 101syl2anc 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( exp `  ( x  +  w
) )  =  ( ( exp `  x
)  x.  ( exp `  w ) ) )
103 fveq2 5757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( x  +  w )  ->  ( exp `  y )  =  ( exp `  (
x  +  w ) ) )
104103eqeq1d 2450 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  +  w )  ->  (
( exp `  y
)  =  ( ( exp `  x )  x.  ( exp `  w
) )  <->  ( exp `  ( x  +  w
) )  =  ( ( exp `  x
)  x.  ( exp `  w ) ) ) )
105104rspcev 3058 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  +  w
)  e.  ( x ( ball `  ( abs  o.  -  ) ) r )  /\  ( exp `  ( x  +  w ) )  =  ( ( exp `  x
)  x.  ( exp `  w ) ) )  ->  E. y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y )  =  ( ( exp `  x
)  x.  ( exp `  w ) ) )
106100, 102, 105syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  E. y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y
)  =  ( ( exp `  x )  x.  ( exp `  w
) ) )
107 eqeq2 2451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( exp `  x
)  x.  ( exp `  w ) )  =  z  ->  ( ( exp `  y )  =  ( ( exp `  x
)  x.  ( exp `  w ) )  <->  ( exp `  y )  =  z ) )
108107rexbidv 2732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( exp `  x
)  x.  ( exp `  w ) )  =  z  ->  ( E. y  e.  ( x
( ball `  ( abs  o. 
-  ) ) r ) ( exp `  y
)  =  ( ( exp `  x )  x.  ( exp `  w
) )  <->  E. y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y
)  =  z ) )
109106, 108syl5ibcom 213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( (
( exp `  x
)  x.  ( exp `  w ) )  =  z  ->  E. y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y
)  =  z ) )
11078, 109sylbid 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  /\  w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  ->  ( ( exp `  w )  =  ( z  /  ( exp `  x ) )  ->  E. y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y )  =  z ) )
111110rexlimdva 2836 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  ( E. w  e.  (
0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w )  =  ( z  /  ( exp `  x ) )  ->  E. y  e.  (
x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y )  =  z ) )
11262, 111impbid 185 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  ( E. y  e.  (
x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y )  =  z  <->  E. w  e.  (
0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w )  =  ( z  /  ( exp `  x ) ) ) )
113 ffn 5620 . . . . . . . . . . . . . . . 16  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
11416, 113ax-mp 5 . . . . . . . . . . . . . . 15  |-  exp  Fn  CC
115 fvelimab 5811 . . . . . . . . . . . . . . 15  |-  ( ( exp  Fn  CC  /\  ( x ( ball `  ( abs  o.  -  ) ) r ) 
C_  CC )  -> 
( z  e.  ( exp " ( x ( ball `  ( abs  o.  -  ) ) r ) )  <->  E. y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y
)  =  z ) )
116114, 26, 115sylancr 646 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  (
z  e.  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  <->  E. y  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) ( exp `  y
)  =  z ) )
117 fvelimab 5811 . . . . . . . . . . . . . . 15  |-  ( ( exp  Fn  CC  /\  ( 0 ( ball `  ( abs  o.  -  ) ) r ) 
C_  CC )  -> 
( ( z  / 
( exp `  x
) )  e.  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  <->  E. w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w
)  =  ( z  /  ( exp `  x
) ) ) )
118114, 71, 117sylancr 646 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  (
( z  /  ( exp `  x ) )  e.  ( exp " (
0 ( ball `  ( abs  o.  -  ) ) r ) )  <->  E. w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) r ) ( exp `  w
)  =  ( z  /  ( exp `  x
) ) ) )
119112, 116, 1183bitr4d 278 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  /\  z  e.  CC )  ->  (
z  e.  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  <->  ( z  /  ( exp `  x
) )  e.  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) r ) ) ) )
120119rabbi2dva 3534 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( CC  i^i  ( exp " ( x ( ball `  ( abs  o.  -  ) ) r ) ) )  =  { z  e.  CC  |  ( z  /  ( exp `  x
) )  e.  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) r ) ) } )
12121, 120syl5eqr 2488 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  =  { z  e.  CC  |  ( z  / 
( exp `  x
) )  e.  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) r ) ) } )
122 eqid 2442 . . . . . . . . . . . 12  |-  ( z  e.  CC  |->  ( z  /  ( exp `  x
) ) )  =  ( z  e.  CC  |->  ( z  /  ( exp `  x ) ) )
123122mptpreima 5392 . . . . . . . . . . 11  |-  ( `' ( z  e.  CC  |->  ( z  /  ( exp `  x ) ) ) " ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) r ) ) )  =  { z  e.  CC  |  ( z  / 
( exp `  x
) )  e.  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) r ) ) }
124121, 123syl6eqr 2492 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  =  ( `' ( z  e.  CC  |->  ( z  /  ( exp `  x
) ) ) "
( exp " (
0 ( ball `  ( abs  o.  -  ) ) r ) ) ) )
12566ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( exp `  x
)  e.  CC )
12675ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( exp `  x
)  =/=  0 )
127122divccncf 18967 . . . . . . . . . . . . 13  |-  ( ( ( exp `  x
)  e.  CC  /\  ( exp `  x )  =/=  0 )  -> 
( z  e.  CC  |->  ( z  /  ( exp `  x ) ) )  e.  ( CC
-cn-> CC ) )
128125, 126, 127syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( z  e.  CC  |->  ( z  / 
( exp `  x
) ) )  e.  ( CC -cn-> CC ) )
1291cncfcn1 18971 . . . . . . . . . . . 12  |-  ( CC
-cn-> CC )  =  ( J  Cn  J )
130128, 129syl6eleq 2532 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( z  e.  CC  |->  ( z  / 
( exp `  x
) ) )  e.  ( J  Cn  J
) )
1311efopnlem2 20579 . . . . . . . . . . . 12  |-  ( ( r  e.  RR+  /\  r  <  pi )  ->  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) r ) )  e.  J
)
132131adantll 696 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( exp " (
0 ( ball `  ( abs  o.  -  ) ) r ) )  e.  J )
133 cnima 17360 . . . . . . . . . . 11  |-  ( ( ( z  e.  CC  |->  ( z  /  ( exp `  x ) ) )  e.  ( J  Cn  J )  /\  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) r ) )  e.  J )  ->  ( `' ( z  e.  CC  |->  ( z  / 
( exp `  x
) ) ) "
( exp " (
0 ( ball `  ( abs  o.  -  ) ) r ) ) )  e.  J )
134130, 132, 133syl2anc 644 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( `' ( z  e.  CC  |->  ( z  /  ( exp `  x ) ) )
" ( exp " (
0 ( ball `  ( abs  o.  -  ) ) r ) ) )  e.  J )
135124, 134eqeltrd 2516 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  e.  J )
136 blcntr 18474 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  x  e.  CC  /\  r  e.  RR+ )  ->  x  e.  ( x ( ball `  ( abs  o.  -  ) ) r ) )
1376, 136mp3an1 1267 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  r  e.  RR+ )  ->  x  e.  ( x
( ball `  ( abs  o. 
-  ) ) r ) )
138 ffun 5622 . . . . . . . . . . . . 13  |-  ( exp
: CC --> CC  ->  Fun 
exp )
13916, 138ax-mp 5 . . . . . . . . . . . 12  |-  Fun  exp
14016fdmi 5625 . . . . . . . . . . . . 13  |-  dom  exp  =  CC
14125, 140syl6sseqr 3381 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  r  e.  RR+ )  -> 
( x ( ball `  ( abs  o.  -  ) ) r ) 
C_  dom  exp )
142 funfvima2 6003 . . . . . . . . . . . 12  |-  ( ( Fun  exp  /\  (
x ( ball `  ( abs  o.  -  ) ) r )  C_  dom  exp )  ->  ( x  e.  ( x ( ball `  ( abs  o.  -  ) ) r )  ->  ( exp `  x
)  e.  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) ) ) )
143139, 141, 142sylancr 646 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  r  e.  RR+ )  -> 
( x  e.  ( x ( ball `  ( abs  o.  -  ) ) r )  ->  ( exp `  x )  e.  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) ) ) )
144137, 143mpd 15 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  r  e.  RR+ )  -> 
( exp `  x
)  e.  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) ) )
145144adantr 453 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( exp `  x
)  e.  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) ) )
146 eleq2 2503 . . . . . . . . . . . 12  |-  ( y  =  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  -> 
( ( exp `  x
)  e.  y  <->  ( exp `  x )  e.  ( exp " ( x ( ball `  ( abs  o.  -  ) ) r ) ) ) )
147 sseq1 3355 . . . . . . . . . . . 12  |-  ( y  =  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  -> 
( y  C_  ( exp " S )  <->  ( exp " ( x ( ball `  ( abs  o.  -  ) ) r ) )  C_  ( exp " S ) ) )
148146, 147anbi12d 693 . . . . . . . . . . 11  |-  ( y  =  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  -> 
( ( ( exp `  x )  e.  y  /\  y  C_  ( exp " S ) )  <-> 
( ( exp `  x
)  e.  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  /\  ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  C_  ( exp " S ) ) ) )
149148rspcev 3058 . . . . . . . . . 10  |-  ( ( ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  e.  J  /\  ( ( exp `  x )  e.  ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  /\  ( exp " ( x ( ball `  ( abs  o.  -  ) ) r ) )  C_  ( exp " S ) ) )  ->  E. y  e.  J  ( ( exp `  x )  e.  y  /\  y  C_  ( exp " S ) ) )
150149expr 600 . . . . . . . . 9  |-  ( ( ( exp " (
x ( ball `  ( abs  o.  -  ) ) r ) )  e.  J  /\  ( exp `  x )  e.  ( exp " ( x ( ball `  ( abs  o.  -  ) ) r ) ) )  ->  ( ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  C_  ( exp " S )  ->  E. y  e.  J  ( ( exp `  x
)  e.  y  /\  y  C_  ( exp " S
) ) ) )
151135, 145, 150syl2anc 644 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( ( exp " ( x (
ball `  ( abs  o. 
-  ) ) r ) )  C_  ( exp " S )  ->  E. y  e.  J  ( ( exp `  x
)  e.  y  /\  y  C_  ( exp " S
) ) ) )
15214, 151syl5 31 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  r  e.  RR+ )  /\  r  <  pi )  ->  ( ( x ( ball `  ( abs  o.  -  ) ) r )  C_  S  ->  E. y  e.  J  ( ( exp `  x
)  e.  y  /\  y  C_  ( exp " S
) ) ) )
153152expimpd 588 . . . . . 6  |-  ( ( x  e.  CC  /\  r  e.  RR+ )  -> 
( ( r  < 
pi  /\  ( x
( ball `  ( abs  o. 
-  ) ) r )  C_  S )  ->  E. y  e.  J  ( ( exp `  x
)  e.  y  /\  y  C_  ( exp " S
) ) ) )
154153rexlimdva 2836 . . . . 5  |-  ( x  e.  CC  ->  ( E. r  e.  RR+  (
r  <  pi  /\  ( x ( ball `  ( abs  o.  -  ) ) r ) 
C_  S )  ->  E. y  e.  J  ( ( exp `  x
)  e.  y  /\  y  C_  ( exp " S
) ) ) )
1555, 13, 154sylc 59 . . . 4  |-  ( ( S  e.  J  /\  x  e.  S )  ->  E. y  e.  J  ( ( exp `  x
)  e.  y  /\  y  C_  ( exp " S
) ) )
156155ralrimiva 2795 . . 3  |-  ( S  e.  J  ->  A. x  e.  S  E. y  e.  J  ( ( exp `  x )  e.  y  /\  y  C_  ( exp " S ) ) )
157 eleq1 2502 . . . . . . 7  |-  ( z  =  ( exp `  x
)  ->  ( z  e.  y  <->  ( exp `  x
)  e.  y ) )
158157anbi1d 687 . . . . . 6  |-  ( z  =  ( exp `  x
)  ->  ( (
z  e.  y  /\  y  C_  ( exp " S
) )  <->  ( ( exp `  x )  e.  y  /\  y  C_  ( exp " S ) ) ) )
159158rexbidv 2732 . . . . 5  |-  ( z  =  ( exp `  x
)  ->  ( E. y  e.  J  (
z  e.  y  /\  y  C_  ( exp " S
) )  <->  E. y  e.  J  ( ( exp `  x )  e.  y  /\  y  C_  ( exp " S ) ) ) )
160159ralima 6007 . . . 4  |-  ( ( exp  Fn  CC  /\  S  C_  CC )  -> 
( A. z  e.  ( exp " S
) E. y  e.  J  ( z  e.  y  /\  y  C_  ( exp " S ) )  <->  A. x  e.  S  E. y  e.  J  ( ( exp `  x
)  e.  y  /\  y  C_  ( exp " S
) ) ) )
161114, 4, 160sylancr 646 . . 3  |-  ( S  e.  J  ->  ( A. z  e.  ( exp " S ) E. y  e.  J  ( z  e.  y  /\  y  C_  ( exp " S
) )  <->  A. x  e.  S  E. y  e.  J  ( ( exp `  x )  e.  y  /\  y  C_  ( exp " S ) ) ) )
162156, 161mpbird 225 . 2  |-  ( S  e.  J  ->  A. z  e.  ( exp " S
) E. y  e.  J  ( z  e.  y  /\  y  C_  ( exp " S ) ) )
1631cnfldtop 18849 . . 3  |-  J  e. 
Top
164 eltop2 17071 . . 3  |-  ( J  e.  Top  ->  (
( exp " S
)  e.  J  <->  A. z  e.  ( exp " S
) E. y  e.  J  ( z  e.  y  /\  y  C_  ( exp " S ) ) ) )
165163, 164ax-mp 5 . 2  |-  ( ( exp " S )  e.  J  <->  A. z  e.  ( exp " S
) E. y  e.  J  ( z  e.  y  /\  y  C_  ( exp " S ) ) )
166162, 165sylibr 205 1  |-  ( S  e.  J  ->  ( exp " S )  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727    =/= wne 2605   A.wral 2711   E.wrex 2712   {crab 2715    i^i cin 3305    C_ wss 3306   class class class wbr 4237    e. cmpt 4291   `'ccnv 4906   dom cdm 4907   ran crn 4908   "cima 4910    o. ccom 4911   Fun wfun 5477    Fn wfn 5478   -->wf 5479   ` cfv 5483  (class class class)co 6110   CCcc 9019   0cc0 9021    + caddc 9024    x. cmul 9026   RR*cxr 9150    < clt 9151    - cmin 9322    / cdiv 9708   RR+crp 10643   abscabs 12070   expce 12695   picpi 12700   TopOpenctopn 13680   * Metcxmt 16717   ballcbl 16719  ℂfldccnfld 16734   Topctop 16989  TopOnctopon 16990    Cn ccn 17319   -cn->ccncf 18937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-er 6934  df-map 7049  df-pm 7050  df-ixp 7093  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-fi 7445  df-sup 7475  df-oi 7508  df-card 7857  df-cda 8079  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-q 10606  df-rp 10644  df-xneg 10741  df-xadd 10742  df-xmul 10743  df-ioo 10951  df-ioc 10952  df-ico 10953  df-icc 10954  df-fz 11075  df-fzo 11167  df-fl 11233  df-mod 11282  df-seq 11355  df-exp 11414  df-fac 11598  df-bc 11625  df-hash 11650  df-shft 11913  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-limsup 12296  df-clim 12313  df-rlim 12314  df-sum 12511  df-ef 12701  df-sin 12703  df-cos 12704  df-tan 12705  df-pi 12706  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-starv 13575  df-sca 13576  df-vsca 13577  df-tset 13579  df-ple 13580  df-ds 13582  df-unif 13583  df-hom 13584  df-cco 13585  df-rest 13681  df-topn 13682  df-topgen 13698  df-pt 13699  df-prds 13702  df-xrs 13757  df-0g 13758  df-gsum 13759  df-qtop 13764  df-imas 13765  df-xps 13767  df-mre 13842  df-mrc 13843  df-acs 13845  df-mnd 14721  df-submnd 14770  df-mulg 14846  df-cntz 15147  df-cmn 15445  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728  df-mopn 16729  df-fbas 16730  df-fg 16731  df-cnfld 16735  df-top 16994  df-bases 16996  df-topon 16997  df-topsp 16998  df-cld 17114  df-ntr 17115  df-cls 17116  df-nei 17193  df-lp 17231  df-perf 17232  df-cn 17322  df-cnp 17323  df-haus 17410  df-cmp 17481  df-tx 17625  df-hmeo 17818  df-fil 17909  df-fm 18001  df-flim 18002  df-flf 18003  df-xms 18381  df-ms 18382  df-tms 18383  df-cncf 18939  df-limc 19784  df-dv 19785  df-log 20485
  Copyright terms: Public domain W3C validator