HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eighmorth Unicode version

Theorem eighmorth 22537
Description: Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eighmorth  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  ( B  e.  ( eigvec `
 T )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
) )  ->  ( A  .ih  B )  =  0 )

Proof of Theorem eighmorth
StepHypRef Expression
1 hmopf 22447 . . . . . . 7  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
2 eleigveccl 22532 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  A  e.  ( eigvec `  T ) )  ->  A  e.  ~H )
31, 2sylan 459 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T )
)  ->  A  e.  ~H )
43adantr 453 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  ->  A  e.  ~H )
5 eleigveccl 22532 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  B  e.  ( eigvec `  T ) )  ->  B  e.  ~H )
61, 5sylan 459 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  B  e.  ( eigvec `  T )
)  ->  B  e.  ~H )
76adantlr 697 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  ->  B  e.  ~H )
84, 7jca 520 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( A  e.  ~H  /\  B  e.  ~H )
)
9 eighmre 22536 . . . . . . 7  |-  ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T )
)  ->  ( ( eigval `
 T ) `  A )  e.  RR )
109recnd 8857 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T )
)  ->  ( ( eigval `
 T ) `  A )  e.  CC )
1110adantr 453 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( ( eigval `  T
) `  A )  e.  CC )
12 eighmre 22536 . . . . . . 7  |-  ( ( T  e.  HrmOp  /\  B  e.  ( eigvec `  T )
)  ->  ( ( eigval `
 T ) `  B )  e.  RR )
1312recnd 8857 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  B  e.  ( eigvec `  T )
)  ->  ( ( eigval `
 T ) `  B )  e.  CC )
1413adantlr 697 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( ( eigval `  T
) `  B )  e.  CC )
1511, 14jca 520 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( ( ( eigval `  T ) `  A
)  e.  CC  /\  ( ( eigval `  T
) `  B )  e.  CC ) )
168, 15jca 520 . . 3  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( ( A  e. 
~H  /\  B  e.  ~H )  /\  (
( ( eigval `  T
) `  A )  e.  CC  /\  ( (
eigval `  T ) `  B )  e.  CC ) ) )
1716adantrr 699 . 2  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  ( B  e.  ( eigvec `
 T )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
) )  ->  (
( A  e.  ~H  /\  B  e.  ~H )  /\  ( ( ( eigval `  T ) `  A
)  e.  CC  /\  ( ( eigval `  T
) `  B )  e.  CC ) ) )
18 eigvec1 22535 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  A  e.  ( eigvec `  T ) )  -> 
( ( T `  A )  =  ( ( ( eigval `  T
) `  A )  .h  A )  /\  A  =/=  0h ) )
1918simpld 447 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  A  e.  ( eigvec `  T ) )  -> 
( T `  A
)  =  ( ( ( eigval `  T ) `  A )  .h  A
) )
201, 19sylan 459 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T )
)  ->  ( T `  A )  =  ( ( ( eigval `  T
) `  A )  .h  A ) )
2120adantr 453 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( T `  A
)  =  ( ( ( eigval `  T ) `  A )  .h  A
) )
22 eigvec1 22535 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  B  e.  ( eigvec `  T ) )  -> 
( ( T `  B )  =  ( ( ( eigval `  T
) `  B )  .h  B )  /\  B  =/=  0h ) )
2322simpld 447 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  B  e.  ( eigvec `  T ) )  -> 
( T `  B
)  =  ( ( ( eigval `  T ) `  B )  .h  B
) )
241, 23sylan 459 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  B  e.  ( eigvec `  T )
)  ->  ( T `  B )  =  ( ( ( eigval `  T
) `  B )  .h  B ) )
2524adantlr 697 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( T `  B
)  =  ( ( ( eigval `  T ) `  B )  .h  B
) )
2621, 25jca 520 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( ( T `  A )  =  ( ( ( eigval `  T
) `  A )  .h  A )  /\  ( T `  B )  =  ( ( (
eigval `  T ) `  B )  .h  B
) ) )
2726adantrr 699 . . 3  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  ( B  e.  ( eigvec `
 T )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
) )  ->  (
( T `  A
)  =  ( ( ( eigval `  T ) `  A )  .h  A
)  /\  ( T `  B )  =  ( ( ( eigval `  T
) `  B )  .h  B ) ) )
2812cjred 11706 . . . . . . 7  |-  ( ( T  e.  HrmOp  /\  B  e.  ( eigvec `  T )
)  ->  ( * `  ( ( eigval `  T
) `  B )
)  =  ( (
eigval `  T ) `  B ) )
2928neeq2d 2462 . . . . . 6  |-  ( ( T  e.  HrmOp  /\  B  e.  ( eigvec `  T )
)  ->  ( (
( eigval `  T ) `  A )  =/=  (
* `  ( ( eigval `
 T ) `  B ) )  <->  ( ( eigval `
 T ) `  A )  =/=  (
( eigval `  T ) `  B ) ) )
3029biimpar 473 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  B  e.  ( eigvec `  T ) )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
)  ->  ( ( eigval `
 T ) `  A )  =/=  (
* `  ( ( eigval `
 T ) `  B ) ) )
3130anasss 630 . . . 4  |-  ( ( T  e.  HrmOp  /\  ( B  e.  ( eigvec `  T )  /\  (
( eigval `  T ) `  A )  =/=  (
( eigval `  T ) `  B ) ) )  ->  ( ( eigval `  T ) `  A
)  =/=  ( * `
 ( ( eigval `  T ) `  B
) ) )
3231adantlr 697 . . 3  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  ( B  e.  ( eigvec `
 T )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
) )  ->  (
( eigval `  T ) `  A )  =/=  (
* `  ( ( eigval `
 T ) `  B ) ) )
3327, 32jca 520 . 2  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  ( B  e.  ( eigvec `
 T )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
) )  ->  (
( ( T `  A )  =  ( ( ( eigval `  T
) `  A )  .h  A )  /\  ( T `  B )  =  ( ( (
eigval `  T ) `  B )  .h  B
) )  /\  (
( eigval `  T ) `  A )  =/=  (
* `  ( ( eigval `
 T ) `  B ) ) ) )
34 simpll 732 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  ->  T  e.  HrmOp )
35 hmop 22495 . . . 4  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H  /\  B  e. 
~H )  ->  ( A  .ih  ( T `  B ) )  =  ( ( T `  A )  .ih  B
) )
3634, 4, 7, 35syl3anc 1184 . . 3  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  B  e.  ( eigvec `  T ) )  -> 
( A  .ih  ( T `  B )
)  =  ( ( T `  A ) 
.ih  B ) )
3736adantrr 699 . 2  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  ( B  e.  ( eigvec `
 T )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
) )  ->  ( A  .ih  ( T `  B ) )  =  ( ( T `  A )  .ih  B
) )
38 eigorth 22411 . . 3  |-  ( ( ( ( A  e. 
~H  /\  B  e.  ~H )  /\  (
( ( eigval `  T
) `  A )  e.  CC  /\  ( (
eigval `  T ) `  B )  e.  CC ) )  /\  (
( ( T `  A )  =  ( ( ( eigval `  T
) `  A )  .h  A )  /\  ( T `  B )  =  ( ( (
eigval `  T ) `  B )  .h  B
) )  /\  (
( eigval `  T ) `  A )  =/=  (
* `  ( ( eigval `
 T ) `  B ) ) ) )  ->  ( ( A  .ih  ( T `  B ) )  =  ( ( T `  A )  .ih  B
)  <->  ( A  .ih  B )  =  0 ) )
3938biimpa 472 . 2  |-  ( ( ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  (
( ( eigval `  T
) `  A )  e.  CC  /\  ( (
eigval `  T ) `  B )  e.  CC ) )  /\  (
( ( T `  A )  =  ( ( ( eigval `  T
) `  A )  .h  A )  /\  ( T `  B )  =  ( ( (
eigval `  T ) `  B )  .h  B
) )  /\  (
( eigval `  T ) `  A )  =/=  (
* `  ( ( eigval `
 T ) `  B ) ) ) )  /\  ( A 
.ih  ( T `  B ) )  =  ( ( T `  A )  .ih  B
) )  ->  ( A  .ih  B )  =  0 )
4017, 33, 37, 39syl21anc 1183 1  |-  ( ( ( T  e.  HrmOp  /\  A  e.  ( eigvec `  T ) )  /\  ( B  e.  ( eigvec `
 T )  /\  ( ( eigval `  T
) `  A )  =/=  ( ( eigval `  T
) `  B )
) )  ->  ( A  .ih  B )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448   -->wf 5218   ` cfv 5222  (class class class)co 5820   CCcc 8731   0cc0 8733   *ccj 11576   ~Hchil 21492    .h csm 21494    .ih csp 21495   0hc0v 21497   HrmOpcho 21523   eigveccei 21532   eigvalcel 21533
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cc 8057  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813  ax-hilex 21572  ax-hfvadd 21573  ax-hvcom 21574  ax-hvass 21575  ax-hv0cl 21576  ax-hvaddid 21577  ax-hfvmul 21578  ax-hvmulid 21579  ax-hvmulass 21580  ax-hvdistr1 21581  ax-hvdistr2 21582  ax-hvmul0 21583  ax-hfi 21651  ax-his1 21654  ax-his2 21655  ax-his3 21656  ax-his4 21657  ax-hcompl 21774
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10655  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-rlim 11958  df-sum 12154  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-mulg 14487  df-cntz 14788  df-cmn 15086  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cld 16751  df-ntr 16752  df-cls 16753  df-nei 16830  df-cn 16952  df-cnp 16953  df-lm 16954  df-haus 17038  df-tx 17252  df-hmeo 17441  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630  df-xms 17880  df-ms 17881  df-tms 17882  df-cfil 18676  df-cau 18677  df-cmet 18678  df-grpo 20851  df-gid 20852  df-ginv 20853  df-gdiv 20854  df-ablo 20942  df-subgo 20962  df-vc 21095  df-nv 21141  df-va 21144  df-ba 21145  df-sm 21146  df-0v 21147  df-vs 21148  df-nmcv 21149  df-ims 21150  df-dip 21267  df-ssp 21291  df-ph 21384  df-cbn 21435  df-hnorm 21541  df-hba 21542  df-hvsub 21544  df-hlim 21545  df-hcau 21546  df-sh 21779  df-ch 21794  df-oc 21824  df-ch0 21825  df-span 21881  df-hmop 22417  df-eigvec 22426  df-eigval 22427
  Copyright terms: Public domain W3C validator