HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorthi Unicode version

Theorem eigorthi 22419
Description: A necessary and sufficient condition (that holds when  T is a Hermitian operator) for two eigenvectors  A and 
B to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigorthi.1  |-  A  e. 
~H
eigorthi.2  |-  B  e. 
~H
eigorthi.3  |-  C  e.  CC
eigorthi.4  |-  D  e.  CC
Assertion
Ref Expression
eigorthi  |-  ( ( ( ( T `  A )  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) )  ->  (
( A  .ih  ( T `  B )
)  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) )

Proof of Theorem eigorthi
StepHypRef Expression
1 oveq2 5868 . . . 4  |-  ( ( T `  B )  =  ( D  .h  B )  ->  ( A  .ih  ( T `  B ) )  =  ( A  .ih  ( D  .h  B )
) )
2 eigorthi.4 . . . . 5  |-  D  e.  CC
3 eigorthi.1 . . . . 5  |-  A  e. 
~H
4 eigorthi.2 . . . . 5  |-  B  e. 
~H
5 his5 21667 . . . . 5  |-  ( ( D  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( D  .h  B ) )  =  ( ( * `  D )  x.  ( A  .ih  B ) ) )
62, 3, 4, 5mp3an 1277 . . . 4  |-  ( A 
.ih  ( D  .h  B ) )  =  ( ( * `  D )  x.  ( A  .ih  B ) )
71, 6syl6eq 2333 . . 3  |-  ( ( T `  B )  =  ( D  .h  B )  ->  ( A  .ih  ( T `  B ) )  =  ( ( * `  D )  x.  ( A  .ih  B ) ) )
8 oveq1 5867 . . . 4  |-  ( ( T `  A )  =  ( C  .h  A )  ->  (
( T `  A
)  .ih  B )  =  ( ( C  .h  A )  .ih  B ) )
9 eigorthi.3 . . . . 5  |-  C  e.  CC
10 ax-his3 21665 . . . . 5  |-  ( ( C  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  (
( C  .h  A
)  .ih  B )  =  ( C  x.  ( A  .ih  B ) ) )
119, 3, 4, 10mp3an 1277 . . . 4  |-  ( ( C  .h  A ) 
.ih  B )  =  ( C  x.  ( A  .ih  B ) )
128, 11syl6eq 2333 . . 3  |-  ( ( T `  A )  =  ( C  .h  A )  ->  (
( T `  A
)  .ih  B )  =  ( C  x.  ( A  .ih  B ) ) )
137, 12eqeqan12rd 2301 . 2  |-  ( ( ( T `  A
)  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  -> 
( ( A  .ih  ( T `  B ) )  =  ( ( T `  A ) 
.ih  B )  <->  ( (
* `  D )  x.  ( A  .ih  B
) )  =  ( C  x.  ( A 
.ih  B ) ) ) )
143, 4hicli 21662 . . . . . . . 8  |-  ( A 
.ih  B )  e.  CC
152cjcli 11656 . . . . . . . . 9  |-  ( * `
 D )  e.  CC
16 mulcan2 9408 . . . . . . . . 9  |-  ( ( ( * `  D
)  e.  CC  /\  C  e.  CC  /\  (
( A  .ih  B
)  e.  CC  /\  ( A  .ih  B )  =/=  0 ) )  ->  ( ( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A 
.ih  B ) )  <-> 
( * `  D
)  =  C ) )
1715, 9, 16mp3an12 1267 . . . . . . . 8  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( A  .ih  B )  =/=  0 )  -> 
( ( ( * `
 D )  x.  ( A  .ih  B
) )  =  ( C  x.  ( A 
.ih  B ) )  <-> 
( * `  D
)  =  C ) )
1814, 17mpan 651 . . . . . . 7  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  <->  ( * `  D )  =  C ) )
19 eqcom 2287 . . . . . . 7  |-  ( ( * `  D )  =  C  <->  C  =  ( * `  D
) )
2018, 19syl6bb 252 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  <->  C  =  (
* `  D )
) )
2120biimpcd 215 . . . . 5  |-  ( ( ( * `  D
)  x.  ( A 
.ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  ->  ( ( A  .ih  B )  =/=  0  ->  C  =  ( * `  D
) ) )
2221necon1d 2517 . . . 4  |-  ( ( ( * `  D
)  x.  ( A 
.ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  ->  ( C  =/=  ( * `  D
)  ->  ( A  .ih  B )  =  0 ) )
2322com12 27 . . 3  |-  ( C  =/=  ( * `  D )  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  ->  ( A  .ih  B )  =  0 ) )
24 oveq2 5868 . . . 4  |-  ( ( A  .ih  B )  =  0  ->  (
( * `  D
)  x.  ( A 
.ih  B ) )  =  ( ( * `
 D )  x.  0 ) )
25 oveq2 5868 . . . . 5  |-  ( ( A  .ih  B )  =  0  ->  ( C  x.  ( A  .ih  B ) )  =  ( C  x.  0 ) )
269mul01i 9004 . . . . . 6  |-  ( C  x.  0 )  =  0
2715mul01i 9004 . . . . . 6  |-  ( ( * `  D )  x.  0 )  =  0
2826, 27eqtr4i 2308 . . . . 5  |-  ( C  x.  0 )  =  ( ( * `  D )  x.  0 )
2925, 28syl6eq 2333 . . . 4  |-  ( ( A  .ih  B )  =  0  ->  ( C  x.  ( A  .ih  B ) )  =  ( ( * `  D )  x.  0 ) )
3024, 29eqtr4d 2320 . . 3  |-  ( ( A  .ih  B )  =  0  ->  (
( * `  D
)  x.  ( A 
.ih  B ) )  =  ( C  x.  ( A  .ih  B ) ) )
3123, 30impbid1 194 . 2  |-  ( C  =/=  ( * `  D )  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  <->  ( A  .ih  B )  =  0 ) )
3213, 31sylan9bb 680 1  |-  ( ( ( ( T `  A )  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) )  ->  (
( A  .ih  ( T `  B )
)  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739    x. cmul 8744   *ccj 11583   ~Hchil 21501    .h csm 21503    .ih csp 21504
This theorem is referenced by:  eigorth  22420
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-hfvmul 21587  ax-hfi 21660  ax-his1 21663  ax-his3 21665
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-2 9806  df-cj 11586  df-re 11587  df-im 11588
  Copyright terms: Public domain W3C validator