HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Unicode version

Theorem eigposi 22530
Description: A sufficient condition (first conjunct pair, that holds when  T is a positive operator) for an eigenvalue  B (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1  |-  A  e. 
~H
eigpos.2  |-  B  e.  CC
Assertion
Ref Expression
eigposi  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 5953 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  ( A  .ih  ( T `  A ) )  =  ( A  .ih  ( B  .h  A )
) )
21eleq1d 2424 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  e.  RR ) )
3 oveq1 5952 . . . . . . . . 9  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( T `  A
)  .ih  A )  =  ( ( B  .h  A )  .ih  A ) )
41, 3eqeq12d 2372 . . . . . . . 8  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
) )
5 eigpos.1 . . . . . . . . 9  |-  A  e. 
~H
6 eigpos.2 . . . . . . . . . 10  |-  B  e.  CC
76, 5hvmulcli 21708 . . . . . . . . 9  |-  ( B  .h  A )  e. 
~H
8 hire 21787 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  ( B  .h  A
)  e.  ~H )  ->  ( ( A  .ih  ( B  .h  A
) )  e.  RR  <->  ( A  .ih  ( B  .h  A ) )  =  ( ( B  .h  A )  .ih  A ) ) )
95, 7, 8mp2an 653 . . . . . . . 8  |-  ( ( A  .ih  ( B  .h  A ) )  e.  RR  <->  ( A  .ih  ( B  .h  A
) )  =  ( ( B  .h  A
)  .ih  A )
)
104, 9syl6rbbr 255 . . . . . . 7  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( B  .h  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
112, 10bitrd 244 . . . . . 6  |-  ( ( T `  A )  =  ( B  .h  A )  ->  (
( A  .ih  ( T `  A )
)  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
1211adantr 451 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  ( A  .ih  ( T `  A
) )  =  ( ( T `  A
)  .ih  A )
) )
135, 6eigrei 22528 . . . . 5  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )
1412, 13bitrd 244 . . . 4  |-  ( ( ( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h )  -> 
( ( A  .ih  ( T `  A ) )  e.  RR  <->  B  e.  RR ) )
1514biimpac 472 . . 3  |-  ( ( ( A  .ih  ( T `  A )
)  e.  RR  /\  ( ( T `  A )  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
1615adantlr 695 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  B  e.  RR )
17 ax-his4 21778 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( A  .ih  A ) )
185, 17mpan 651 . . . 4  |-  ( A  =/=  0h  ->  0  <  ( A  .ih  A
) )
1918ad2antll 709 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <  ( A  .ih  A ) )
20 simplr 731 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( A  .ih  ( T `  A ) ) )
211ad2antrl 708 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( A 
.ih  ( B  .h  A ) ) )
22 his5 21779 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  ~H  /\  A  e.  ~H )  ->  ( A  .ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) ) )
236, 5, 5, 22mp3an 1277 . . . . . 6  |-  ( A 
.ih  ( B  .h  A ) )  =  ( ( * `  B )  x.  ( A  .ih  A ) )
2416cjred 11807 . . . . . . 7  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( * `  B )  =  B )
2524oveq1d 5960 . . . . . 6  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( ( * `
 B )  x.  ( A  .ih  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2623, 25syl5eq 2402 . . . . 5  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( B  .h  A
) )  =  ( B  x.  ( A 
.ih  A ) ) )
2721, 26eqtrd 2390 . . . 4  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( A  .ih  ( T `  A ) )  =  ( B  x.  ( A  .ih  A ) ) )
2820, 27breqtrd 4128 . . 3  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  ( B  x.  ( A  .ih  A ) ) )
29 hiidrcl 21788 . . . . 5  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
305, 29ax-mp 8 . . . 4  |-  ( A 
.ih  A )  e.  RR
31 prodge02 9694 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  .ih  A
)  e.  RR )  /\  ( 0  < 
( A  .ih  A
)  /\  0  <_  ( B  x.  ( A 
.ih  A ) ) ) )  ->  0  <_  B )
3230, 31mpanl2 662 . . 3  |-  ( ( B  e.  RR  /\  ( 0  <  ( A  .ih  A )  /\  0  <_  ( B  x.  ( A  .ih  A ) ) ) )  -> 
0  <_  B )
3316, 19, 28, 32syl12anc 1180 . 2  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  0  <_  B
)
3416, 33jca 518 1  |-  ( ( ( ( A  .ih  ( T `  A ) )  e.  RR  /\  0  <_  ( A  .ih  ( T `  A ) ) )  /\  (
( T `  A
)  =  ( B  .h  A )  /\  A  =/=  0h ) )  ->  ( B  e.  RR  /\  0  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   CCcc 8825   RRcr 8826   0cc0 8827    x. cmul 8832    < clt 8957    <_ cle 8958   *ccj 11677   ~Hchil 21613    .h csm 21615    .ih csp 21616   0hc0v 21618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-hfvmul 21699  ax-hfi 21772  ax-his1 21775  ax-his3 21777  ax-his4 21778
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-po 4396  df-so 4397  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-2 9894  df-cj 11680  df-re 11681  df-im 11682
  Copyright terms: Public domain W3C validator