HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Unicode version

Theorem eigre 23299
Description: A necessary and sufficient condition (that holds when  T is a Hermitian operator) for an eigenvalue  B to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre  |-  ( ( ( A  e.  ~H  /\  B  e.  CC )  /\  ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h ) )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 5695 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  A )  =  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )
2 oveq2 6056 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( B  .h  A )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
) )
31, 2eqeq12d 2426 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  =  ( B  .h  A )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
4 neeq1 2583 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  =/=  0h  <->  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) )
53, 4anbi12d 692 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  A )  =  ( B  .h  A )  /\  A  =/=  0h ) 
<->  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) ) )
6 id 20 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  A  =  if ( A  e. 
~H ,  A ,  0h ) )
76, 1oveq12d 6066 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  .ih  ( T `  A ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) ) )
81, 6oveq12d 6066 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  .ih  A )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
) )
97, 8eqeq12d 2426 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) ) ) )
109bibi1d 311 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( A  .ih  ( T `  A ) )  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  B  e.  RR ) ) )
115, 10imbi12d 312 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h )  ->  ( ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
)  <->  B  e.  RR ) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  B  e.  RR ) ) ) )
12 oveq1 6055 . . . . . 6  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( B  .h  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) ) )
1312eqeq2d 2423 . . . . 5  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( if ( B  e.  CC ,  B , 
0 )  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
1413anbi1d 686 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
)  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) 
<->  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) ) )
15 eleq1 2472 . . . . 5  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( B  e.  RR  <->  if ( B  e.  CC ,  B ,  0 )  e.  RR ) )
1615bibi2d 310 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  B  e.  RR )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  if ( B  e.  CC ,  B ,  0 )  e.  RR ) ) )
1714, 16imbi12d 312 . . 3  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  B  e.  RR ) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  if ( B  e.  CC ,  B , 
0 )  e.  RR ) ) ) )
18 ax-hv0cl 22467 . . . . 5  |-  0h  e.  ~H
1918elimel 3759 . . . 4  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
20 0cn 9048 . . . . 5  |-  0  e.  CC
2120elimel 3759 . . . 4  |-  if ( B  e.  CC ,  B ,  0 )  e.  CC
2219, 21eigrei 23298 . . 3  |-  ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  if ( B  e.  CC ,  B , 
0 )  e.  RR ) )
2311, 17, 22dedth2h 3749 . 2  |-  ( ( A  e.  ~H  /\  B  e.  CC )  ->  ( ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h )  ->  ( ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
)  <->  B  e.  RR ) ) )
2423imp 419 1  |-  ( ( ( A  e.  ~H  /\  B  e.  CC )  /\  ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h ) )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2575   ifcif 3707   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   0cc0 8954   ~Hchil 22383    .h csm 22385    .ih csp 22386   0hc0v 22388
This theorem is referenced by:  eighmre  23427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-hv0cl 22467  ax-hfvmul 22469  ax-hfi 22542  ax-his1 22545  ax-his3 22547  ax-his4 22548
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-po 4471  df-so 4472  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-2 10022  df-cj 11867  df-re 11868  df-im 11869
  Copyright terms: Public domain W3C validator