HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Unicode version

Theorem eigre 22340
Description: A necessary and sufficient condition (that holds when  T is a Hermitian operator) for an eigenvalue  B to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre  |-  ( ( ( A  e.  ~H  /\  B  e.  CC )  /\  ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h ) )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 5423 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  A )  =  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )
2 oveq2 5765 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( B  .h  A )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
) )
31, 2eqeq12d 2270 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  =  ( B  .h  A )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
4 neeq1 2427 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  =/=  0h  <->  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) )
53, 4anbi12d 694 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  A )  =  ( B  .h  A )  /\  A  =/=  0h ) 
<->  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) ) )
6 id 21 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  A  =  if ( A  e. 
~H ,  A ,  0h ) )
76, 1oveq12d 5775 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  .ih  ( T `  A ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) ) )
81, 6oveq12d 5775 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  .ih  A )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
) )
97, 8eqeq12d 2270 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) ) ) )
109bibi1d 312 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( A  .ih  ( T `  A ) )  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  B  e.  RR ) ) )
115, 10imbi12d 313 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h )  ->  ( ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
)  <->  B  e.  RR ) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  B  e.  RR ) ) ) )
12 oveq1 5764 . . . . . 6  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( B  .h  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) ) )
1312eqeq2d 2267 . . . . 5  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  <->  ( T `  if ( A  e. 
~H ,  A ,  0h ) )  =  ( if ( B  e.  CC ,  B , 
0 )  .h  if ( A  e.  ~H ,  A ,  0h )
) ) )
1413anbi1d 688 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h )
)  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) 
<->  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h ) ) )
15 eleq1 2316 . . . . 5  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( B  e.  RR  <->  if ( B  e.  CC ,  B ,  0 )  e.  RR ) )
1615bibi2d 311 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  B  e.  RR )  <->  ( ( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )  =  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( A  e.  ~H ,  A ,  0h ) )  <->  if ( B  e.  CC ,  B ,  0 )  e.  RR ) ) )
1714, 16imbi12d 313 . . 3  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( B  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  B  e.  RR ) )  <->  ( (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  if ( B  e.  CC ,  B , 
0 )  e.  RR ) ) ) )
18 ax-hv0cl 21508 . . . . 5  |-  0h  e.  ~H
1918elimel 3558 . . . 4  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
20 0cn 8764 . . . . 5  |-  0  e.  CC
2120elimel 3558 . . . 4  |-  if ( B  e.  CC ,  B ,  0 )  e.  CC
2219, 21eigrei 22339 . . 3  |-  ( ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  =  ( if ( B  e.  CC ,  B ,  0 )  .h  if ( A  e.  ~H ,  A ,  0h ) )  /\  if ( A  e.  ~H ,  A ,  0h )  =/=  0h )  ->  (
( if ( A  e.  ~H ,  A ,  0h )  .ih  ( T `  if ( A  e.  ~H ,  A ,  0h ) ) )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( A  e.  ~H ,  A ,  0h )
)  <->  if ( B  e.  CC ,  B , 
0 )  e.  RR ) )
2311, 17, 22dedth2h 3548 . 2  |-  ( ( A  e.  ~H  /\  B  e.  CC )  ->  ( ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h )  ->  ( ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
)  <->  B  e.  RR ) ) )
2423imp 420 1  |-  ( ( ( A  e.  ~H  /\  B  e.  CC )  /\  ( ( T `
 A )  =  ( B  .h  A
)  /\  A  =/=  0h ) )  ->  (
( A  .ih  ( T `  A )
)  =  ( ( T `  A ) 
.ih  A )  <->  B  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   ifcif 3506   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   ~Hchil 21424    .h csm 21426    .ih csp 21427   0hc0v 21429
This theorem is referenced by:  eighmre  22468
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-hv0cl 21508  ax-hfvmul 21510  ax-hfi 21583  ax-his1 21586  ax-his3 21588  ax-his4 21589
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-2 9737  df-cj 11514  df-re 11515  df-im 11516
  Copyright terms: Public domain W3C validator