MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Structured version   Unicode version

Theorem eirrlem 12805
Description: Lemma for eirr 12806. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
eirr.2  |-  ( ph  ->  P  e.  ZZ )
eirr.3  |-  ( ph  ->  Q  e.  NN )
eirr.4  |-  ( ph  ->  _e  =  ( P  /  Q ) )
Assertion
Ref Expression
eirrlem  |-  -.  ph
Distinct variable group:    Q, n
Allowed substitution hints:    ph( n)    P( n)    F( n)

Proof of Theorem eirrlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 esum 12685 . . . . . . . . . 10  |-  _e  =  sum_ k  e.  NN0  (
1  /  ( ! `
 k ) )
2 fveq2 5730 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
32oveq2d 6099 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
4 eirr.1 . . . . . . . . . . . 12  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
5 ovex 6108 . . . . . . . . . . . 12  |-  ( 1  /  ( ! `  k ) )  e. 
_V
63, 4, 5fvmpt 5808 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 1  /  ( ! `  k )
) )
76sumeq2i 12495 . . . . . . . . . 10  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
81, 7eqtr4i 2461 . . . . . . . . 9  |-  _e  =  sum_ k  e.  NN0  ( F `  k )
9 nn0uz 10522 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
10 eqid 2438 . . . . . . . . . 10  |-  ( ZZ>= `  ( Q  +  1
) )  =  (
ZZ>= `  ( Q  + 
1 ) )
11 eirr.3 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  NN )
1211peano2nnd 10019 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  NN )
1312nnnn0d 10276 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  NN0 )
14 eqidd 2439 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
15 nn0z 10306 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  n  e.  ZZ )
16 1exp 11411 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
1715, 16syl 16 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
1817oveq1d 6098 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
1918mpteq2ia 4293 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
204, 19eqtr4i 2461 . . . . . . . . . . . . 13  |-  F  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
2120eftval 12681 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 1 ^ k )  /  ( ! `  k )
) )
2221adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1 ^ k
)  /  ( ! `
 k ) ) )
23 ax-1cn 9050 . . . . . . . . . . . . 13  |-  1  e.  CC
2423a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
25 eftcl 12678 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1 ^ k )  /  ( ! `  k )
)  e.  CC )
2624, 25sylan 459 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1 ^ k )  /  ( ! `  k ) )  e.  CC )
2722, 26eqeltrd 2512 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
2820efcllem 12682 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  seq  0 (  +  ,  F )  e.  dom  ~~>  )
2924, 28syl 16 . . . . . . . . . 10  |-  ( ph  ->  seq  0 (  +  ,  F )  e. 
dom 
~~>  )
309, 10, 13, 14, 27, 29isumsplit 12622 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( Q  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) )
318, 30syl5eq 2482 . . . . . . . 8  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3211nncnd 10018 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  CC )
33 pncan 9313 . . . . . . . . . . . 12  |-  ( ( Q  e.  CC  /\  1  e.  CC )  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3432, 23, 33sylancl 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3534oveq2d 6099 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... (
( Q  +  1 )  -  1 ) )  =  ( 0 ... Q ) )
3635sumeq1d 12497 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )
3736oveq1d 6098 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  =  (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) ) )
3831, 37eqtrd 2470 . . . . . . 7  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... Q ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3938oveq1d 6098 . . . . . 6  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  ( (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) )
40 fzfid 11314 . . . . . . . 8  |-  ( ph  ->  ( 0 ... Q
)  e.  Fin )
41 elfznn0 11085 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  k  e.  NN0 )
4241, 27sylan2 462 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  e.  CC )
4340, 42fsumcl 12529 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  e.  CC )
446adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
45 faccl 11578 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4645adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
4746nnrpd 10649 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
4847rpreccld 10660 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ! `  k ) )  e.  RR+ )
4944, 48eqeltrd 2512 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
509, 10, 13, 14, 49, 29isumrpcl 12625 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR+ )
5150rpred 10650 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR )
5251recnd 9116 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  CC )
5343, 52pncan2d 9415 . . . . . 6  |-  ( ph  ->  ( ( sum_ k  e.  ( 0 ... Q
) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )
5439, 53eqtrd 2470 . . . . 5  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
5554oveq2d 6099 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
5611nnnn0d 10276 . . . . . . 7  |-  ( ph  ->  Q  e.  NN0 )
57 faccl 11578 . . . . . . 7  |-  ( Q  e.  NN0  ->  ( ! `
 Q )  e.  NN )
5856, 57syl 16 . . . . . 6  |-  ( ph  ->  ( ! `  Q
)  e.  NN )
5958nncnd 10018 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  CC )
60 ere 12693 . . . . . . 7  |-  _e  e.  RR
6160recni 9104 . . . . . 6  |-  _e  e.  CC
6261a1i 11 . . . . 5  |-  ( ph  ->  _e  e.  CC )
6359, 62, 43subdid 9491 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6455, 63eqtr3d 2472 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
65 eirr.4 . . . . . . 7  |-  ( ph  ->  _e  =  ( P  /  Q ) )
6665oveq2d 6099 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( ( ! `  Q )  x.  ( P  /  Q
) ) )
67 eirr.2 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
6867zcnd 10378 . . . . . . 7  |-  ( ph  ->  P  e.  CC )
6911nnne0d 10046 . . . . . . 7  |-  ( ph  ->  Q  =/=  0 )
7059, 68, 32, 69div12d 9828 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7166, 70eqtrd 2470 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7211nnred 10017 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
7372leidd 9595 . . . . . . . 8  |-  ( ph  ->  Q  <_  Q )
74 facdiv 11580 . . . . . . . 8  |-  ( ( Q  e.  NN0  /\  Q  e.  NN  /\  Q  <_  Q )  ->  (
( ! `  Q
)  /  Q )  e.  NN )
7556, 11, 73, 74syl3anc 1185 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  NN )
7675nnzd 10376 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  ZZ )
7767, 76zmulcld 10383 . . . . 5  |-  ( ph  ->  ( P  x.  (
( ! `  Q
)  /  Q ) )  e.  ZZ )
7871, 77eqeltrd 2512 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  e.  ZZ )
7940, 59, 42fsummulc2 12569 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( 0 ... Q
) ( ( ! `
 Q )  x.  ( F `  k
) ) )
8041adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  k  e.  NN0 )
8180, 6syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  =  ( 1  / 
( ! `  k
) ) )
8281oveq2d 6099 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8359adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  Q )  e.  CC )
8441, 46sylan2 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  NN )
8584nncnd 10018 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  CC )
86 facne0 11579 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  =/=  0 )
8780, 86syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  =/=  0 )
8883, 85, 87divrecd 9795 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8982, 88eqtr4d 2473 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  / 
( ! `  k
) ) )
90 permnn 11619 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9190adantl 454 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9289, 91eqeltrd 2512 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  NN )
9392nnzd 10376 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  ZZ )
9440, 93fsumzcl 12531 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( ( ! `  Q )  x.  ( F `  k )
)  e.  ZZ )
9579, 94eqeltrd 2512 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  ZZ )
9678, 95zsubcld 10382 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  e.  ZZ )
9764, 96eqeltrd 2512 . 2  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  ZZ )
98 0z 10295 . . . 4  |-  0  e.  ZZ
9998a1i 11 . . 3  |-  ( ph  ->  0  e.  ZZ )
10058nnrpd 10649 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  RR+ )
101100, 50rpmulcld 10666 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR+ )
102101rpgt0d 10653 . . 3  |-  ( ph  ->  0  <  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
10312peano2nnd 10019 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  NN )
104103nnred 10017 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  RR )
105 faccl 11578 . . . . . . . . 9  |-  ( ( Q  +  1 )  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  e.  NN )
10613, 105syl 16 . . . . . . . 8  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  NN )
107106, 12nnmulcld 10049 . . . . . . 7  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  NN )
108104, 107nndivred 10050 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  RR )
10958nnrecred 10047 . . . . . 6  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  RR )
110 abs1 12104 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
111110oveq1i 6093 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ n )  =  ( 1 ^ n
)
112111oveq1i 6093 . . . . . . . . . 10  |-  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) )  =  ( ( 1 ^ n )  /  ( ! `  n )
)
113112mpteq2i 4294 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( 1 ^ n )  / 
( ! `  n
) ) )
11420, 113eqtr4i 2461 . . . . . . . 8  |-  F  =  ( n  e.  NN0  |->  ( ( ( abs `  1 ) ^
n )  /  ( ! `  n )
) )
115 eqid 2438 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  1
) ^ ( Q  +  1 ) )  /  ( ! `  ( Q  +  1
) ) )  x.  ( ( 1  / 
( ( Q  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  / 
( ! `  ( Q  +  1 ) ) )  x.  (
( 1  /  (
( Q  +  1 )  +  1 ) ) ^ n ) ) )
116 1le1 9652 . . . . . . . . . 10  |-  1  <_  1
117110, 116eqbrtri 4233 . . . . . . . . 9  |-  ( abs `  1 )  <_ 
1
118117a1i 11 . . . . . . . 8  |-  ( ph  ->  ( abs `  1
)  <_  1 )
11920, 114, 115, 12, 24, 118eftlub 12712 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <_  ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  x.  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) ) ) )
12050rprege0d 10657 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
121 absid 12103 . . . . . . . 8  |-  ( (
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
122120, 121syl 16 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )
123110oveq1i 6093 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ ( Q  + 
1 ) )  =  ( 1 ^ ( Q  +  1 ) )
12412nnzd 10376 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  ZZ )
125 1exp 11411 . . . . . . . . . . 11  |-  ( ( Q  +  1 )  e.  ZZ  ->  (
1 ^ ( Q  +  1 ) )  =  1 )
126124, 125syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ^ ( Q  +  1 ) )  =  1 )
127123, 126syl5eq 2482 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  1
) ^ ( Q  +  1 ) )  =  1 )
128127oveq1d 6098 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( 1  x.  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) ) )
129108recnd 9116 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  CC )
130129mulid2d 9108 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
131128, 130eqtrd 2470 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
132119, 122, 1313brtr3d 4243 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <_  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) )
13312nnred 10017 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  RR )
134133, 133readdcld 9117 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  e.  RR )
135133, 133remulcld 9118 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  e.  RR )
136 1re 9092 . . . . . . . . . . 11  |-  1  e.  RR
137136a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
13811nnge1d 10044 . . . . . . . . . . 11  |-  ( ph  ->  1  <_  Q )
139 1nn 10013 . . . . . . . . . . . 12  |-  1  e.  NN
140 nnleltp1 10331 . . . . . . . . . . . 12  |-  ( ( 1  e.  NN  /\  Q  e.  NN )  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
141139, 11, 140sylancr 646 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
142138, 141mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( Q  +  1 ) )
143137, 133, 133, 142ltadd2dd 9231 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
14412nncnd 10018 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  CC )
1451442timesd 10212 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  =  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
146 df-2 10060 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
147137, 72, 137, 138leadd1dd 9642 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  1 )  <_  ( Q  +  1 ) )
148146, 147syl5eqbr 4247 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  ( Q  +  1 ) )
149 2re 10071 . . . . . . . . . . . . 13  |-  2  e.  RR
150149a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR )
15112nngt0d 10045 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( Q  +  1 ) )
152 lemul1 9864 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( Q  +  1
)  e.  RR  /\  ( ( Q  + 
1 )  e.  RR  /\  0  <  ( Q  +  1 ) ) )  ->  ( 2  <_  ( Q  + 
1 )  <->  ( 2  x.  ( Q  + 
1 ) )  <_ 
( ( Q  + 
1 )  x.  ( Q  +  1 ) ) ) )
153150, 133, 133, 151, 152syl112anc 1189 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  <_  ( Q  +  1 )  <-> 
( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) ) )
154148, 153mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
155145, 154eqbrtrrd 4236 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
156104, 134, 135, 143, 155ltletrd 9232 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
157 facp1 11573 . . . . . . . . . . . . 13  |-  ( Q  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  =  ( ( ! `  Q )  x.  ( Q  +  1 ) ) )
15856, 157syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  =  ( ( ! `  Q )  x.  ( Q  + 
1 ) ) )
159158oveq1d 6098 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ( ! `  Q
)  x.  ( Q  +  1 ) )  /  ( ! `  Q ) ) )
160106nncnd 10018 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  CC )
16158nnne0d 10046 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  Q
)  =/=  0 )
162160, 59, 161divrecd 9795 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
163144, 59, 161divcan3d 9797 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( Q  +  1 ) )  /  ( ! `  Q )
)  =  ( Q  +  1 ) )
164159, 162, 1633eqtr3rd 2479 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
165164oveq1d 6098 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( 1  /  ( ! `  Q ) ) )  x.  ( Q  + 
1 ) ) )
166109recnd 9116 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  CC )
167160, 166, 144mul32d 9278 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( 1  /  ( ! `  Q )
) )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
168165, 167eqtrd 2470 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
169156, 168breqtrd 4238 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
170107nnred 10017 . . . . . . . 8  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  RR )
171107nngt0d 10045 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )
172 ltdivmul 9884 . . . . . . . 8  |-  ( ( ( ( Q  + 
1 )  +  1 )  e.  RR  /\  ( 1  /  ( ! `  Q )
)  e.  RR  /\  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  e.  RR  /\  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  ->  ( (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )  <  ( 1  / 
( ! `  Q
) )  <->  ( ( Q  +  1 )  +  1 )  < 
( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  x.  (
1  /  ( ! `
 Q ) ) ) ) )
173104, 109, 170, 171, 172syl112anc 1189 . . . . . . 7  |-  ( ph  ->  ( ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) )  <  (
1  /  ( ! `
 Q ) )  <-> 
( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) ) )
174169, 173mpbird 225 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  <  ( 1  /  ( ! `  Q ) ) )
17551, 108, 109, 132, 174lelttrd 9230 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <  ( 1  / 
( ! `  Q
) ) )
17651, 137, 100ltmuldiv2d 10694 . . . . 5  |-  ( ph  ->  ( ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  1  <->  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k )  < 
( 1  /  ( ! `  Q )
) ) )
177175, 176mpbird 225 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  1 )
178 0p1e1 10095 . . . 4  |-  ( 0  +  1 )  =  1
179177, 178syl6breqr 4254 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  ( 0  +  1 ) )
180 btwnnz 10348 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  /\  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  ( 0  +  1 ) )  ->  -.  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
18199, 102, 179, 180syl3anc 1185 . 2  |-  ( ph  ->  -.  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
18297, 181pm2.65i 168 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4214    e. cmpt 4268   dom cdm 4880   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    < clt 9122    <_ cle 9123    - cmin 9293    / cdiv 9679   NNcn 10002   2c2 10051   NN0cn0 10223   ZZcz 10284   ZZ>=cuz 10490   RR+crp 10614   ...cfz 11045    seq cseq 11325   ^cexp 11384   !cfa 11568   abscabs 12041    ~~> cli 12280   sum_csu 12481   _eceu 12667
This theorem is referenced by:  eirr  12806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-ico 10924  df-fz 11046  df-fzo 11138  df-fl 11204  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-e 12673
  Copyright terms: Public domain W3C validator