MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Unicode version

Theorem eirrlem 12476
Description: Lemma for eirr 12477. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
eirr.2  |-  ( ph  ->  P  e.  ZZ )
eirr.3  |-  ( ph  ->  Q  e.  NN )
eirr.4  |-  ( ph  ->  _e  =  ( P  /  Q ) )
Assertion
Ref Expression
eirrlem  |-  -.  ph
Distinct variable group:    Q, n
Dummy variable  k is distinct from all other variables.
Allowed substitution hints:    ph( n)    P( n)    F( n)

Proof of Theorem eirrlem
StepHypRef Expression
1 esum 12356 . . . . . . . . . 10  |-  _e  =  sum_ k  e.  NN0  (
1  /  ( ! `
 k ) )
2 fveq2 5485 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
32oveq2d 5835 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
4 eirr.1 . . . . . . . . . . . 12  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
5 ovex 5844 . . . . . . . . . . . 12  |-  ( 1  /  ( ! `  k ) )  e. 
_V
63, 4, 5fvmpt 5563 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 1  /  ( ! `  k )
) )
76sumeq2i 12166 . . . . . . . . . 10  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
81, 7eqtr4i 2307 . . . . . . . . 9  |-  _e  =  sum_ k  e.  NN0  ( F `  k )
9 nn0uz 10257 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
10 eqid 2284 . . . . . . . . . 10  |-  ( ZZ>= `  ( Q  +  1
) )  =  (
ZZ>= `  ( Q  + 
1 ) )
11 eirr.3 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  NN )
1211peano2nnd 9758 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  NN )
1312nnnn0d 10013 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  NN0 )
14 eqidd 2285 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
15 nn0z 10041 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  n  e.  ZZ )
16 1exp 11125 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
1715, 16syl 17 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
1817oveq1d 5834 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
1918mpteq2ia 4103 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
204, 19eqtr4i 2307 . . . . . . . . . . . . 13  |-  F  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
2120eftval 12352 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 1 ^ k )  /  ( ! `  k )
) )
2221adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1 ^ k
)  /  ( ! `
 k ) ) )
23 ax-1cn 8790 . . . . . . . . . . . . 13  |-  1  e.  CC
2423a1i 12 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
25 eftcl 12349 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1 ^ k )  /  ( ! `  k )
)  e.  CC )
2624, 25sylan 459 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1 ^ k )  /  ( ! `  k ) )  e.  CC )
2722, 26eqeltrd 2358 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
2820efcllem 12353 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  seq  0 (  +  ,  F )  e.  dom  ~~>  )
2924, 28syl 17 . . . . . . . . . 10  |-  ( ph  ->  seq  0 (  +  ,  F )  e. 
dom 
~~>  )
309, 10, 13, 14, 27, 29isumsplit 12293 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( Q  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) )
318, 30syl5eq 2328 . . . . . . . 8  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3211nncnd 9757 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  CC )
33 pncan 9052 . . . . . . . . . . . 12  |-  ( ( Q  e.  CC  /\  1  e.  CC )  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3432, 23, 33sylancl 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3534oveq2d 5835 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... (
( Q  +  1 )  -  1 ) )  =  ( 0 ... Q ) )
3635sumeq1d 12168 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )
3736oveq1d 5834 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  =  (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) ) )
3831, 37eqtrd 2316 . . . . . . 7  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... Q ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3938oveq1d 5834 . . . . . 6  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  ( (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) )
40 fzfid 11029 . . . . . . . 8  |-  ( ph  ->  ( 0 ... Q
)  e.  Fin )
41 elfznn0 10816 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  k  e.  NN0 )
4241, 27sylan2 462 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  e.  CC )
4340, 42fsumcl 12200 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  e.  CC )
446adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
45 faccl 11292 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4645adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
4746nnrpd 10384 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
4847rpreccld 10395 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ! `  k ) )  e.  RR+ )
4944, 48eqeltrd 2358 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
509, 10, 13, 14, 49, 29isumrpcl 12296 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR+ )
5150rpred 10385 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR )
5251recnd 8856 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  CC )
5343, 52pncan2d 9154 . . . . . 6  |-  ( ph  ->  ( ( sum_ k  e.  ( 0 ... Q
) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )
5439, 53eqtrd 2316 . . . . 5  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
5554oveq2d 5835 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
5611nnnn0d 10013 . . . . . . 7  |-  ( ph  ->  Q  e.  NN0 )
57 faccl 11292 . . . . . . 7  |-  ( Q  e.  NN0  ->  ( ! `
 Q )  e.  NN )
5856, 57syl 17 . . . . . 6  |-  ( ph  ->  ( ! `  Q
)  e.  NN )
5958nncnd 9757 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  CC )
60 ere 12364 . . . . . . 7  |-  _e  e.  RR
6160recni 8844 . . . . . 6  |-  _e  e.  CC
6261a1i 12 . . . . 5  |-  ( ph  ->  _e  e.  CC )
6359, 62, 43subdid 9230 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6455, 63eqtr3d 2318 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
65 eirr.4 . . . . . . 7  |-  ( ph  ->  _e  =  ( P  /  Q ) )
6665oveq2d 5835 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( ( ! `  Q )  x.  ( P  /  Q
) ) )
67 eirr.2 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
6867zcnd 10113 . . . . . . 7  |-  ( ph  ->  P  e.  CC )
6911nnne0d 9785 . . . . . . 7  |-  ( ph  ->  Q  =/=  0 )
7059, 68, 32, 69div12d 9567 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7166, 70eqtrd 2316 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7211nnred 9756 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
7372leidd 9334 . . . . . . . 8  |-  ( ph  ->  Q  <_  Q )
74 facdiv 11294 . . . . . . . 8  |-  ( ( Q  e.  NN0  /\  Q  e.  NN  /\  Q  <_  Q )  ->  (
( ! `  Q
)  /  Q )  e.  NN )
7556, 11, 73, 74syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  NN )
7675nnzd 10111 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  ZZ )
7767, 76zmulcld 10118 . . . . 5  |-  ( ph  ->  ( P  x.  (
( ! `  Q
)  /  Q ) )  e.  ZZ )
7871, 77eqeltrd 2358 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  e.  ZZ )
7940, 59, 42fsummulc2 12240 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( 0 ... Q
) ( ( ! `
 Q )  x.  ( F `  k
) ) )
8041adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  k  e.  NN0 )
8180, 6syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  =  ( 1  / 
( ! `  k
) ) )
8281oveq2d 5835 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8359adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  Q )  e.  CC )
8441, 46sylan2 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  NN )
8584nncnd 9757 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  CC )
86 facne0 11293 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  =/=  0 )
8780, 86syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  =/=  0 )
8883, 85, 87divrecd 9534 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8982, 88eqtr4d 2319 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  / 
( ! `  k
) ) )
90 permnn 11330 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9190adantl 454 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9289, 91eqeltrd 2358 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  NN )
9392nnzd 10111 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  ZZ )
9440, 93fsumzcl 12202 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( ( ! `  Q )  x.  ( F `  k )
)  e.  ZZ )
9579, 94eqeltrd 2358 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  ZZ )
9678, 95zsubcld 10117 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  e.  ZZ )
9764, 96eqeltrd 2358 . 2  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  ZZ )
98 0z 10030 . . . 4  |-  0  e.  ZZ
9998a1i 12 . . 3  |-  ( ph  ->  0  e.  ZZ )
10058nnrpd 10384 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  RR+ )
101100, 50rpmulcld 10401 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR+ )
102101rpgt0d 10388 . . 3  |-  ( ph  ->  0  <  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
10312peano2nnd 9758 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  NN )
104103nnred 9756 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  RR )
105 faccl 11292 . . . . . . . . 9  |-  ( ( Q  +  1 )  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  e.  NN )
10613, 105syl 17 . . . . . . . 8  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  NN )
107106, 12nnmulcld 9788 . . . . . . 7  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  NN )
108104, 107nndivred 9789 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  RR )
10958nnrecred 9786 . . . . . 6  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  RR )
110 abs1 11776 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
111110oveq1i 5829 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ n )  =  ( 1 ^ n
)
112111oveq1i 5829 . . . . . . . . . 10  |-  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) )  =  ( ( 1 ^ n )  /  ( ! `  n )
)
113112mpteq2i 4104 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( 1 ^ n )  / 
( ! `  n
) ) )
11420, 113eqtr4i 2307 . . . . . . . 8  |-  F  =  ( n  e.  NN0  |->  ( ( ( abs `  1 ) ^
n )  /  ( ! `  n )
) )
115 eqid 2284 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  1
) ^ ( Q  +  1 ) )  /  ( ! `  ( Q  +  1
) ) )  x.  ( ( 1  / 
( ( Q  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  / 
( ! `  ( Q  +  1 ) ) )  x.  (
( 1  /  (
( Q  +  1 )  +  1 ) ) ^ n ) ) )
116 1le1 9391 . . . . . . . . . 10  |-  1  <_  1
117110, 116eqbrtri 4043 . . . . . . . . 9  |-  ( abs `  1 )  <_ 
1
118117a1i 12 . . . . . . . 8  |-  ( ph  ->  ( abs `  1
)  <_  1 )
11920, 114, 115, 12, 24, 118eftlub 12383 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <_  ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  x.  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) ) ) )
12050rprege0d 10392 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
121 absid 11775 . . . . . . . 8  |-  ( (
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
122120, 121syl 17 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )
123110oveq1i 5829 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ ( Q  + 
1 ) )  =  ( 1 ^ ( Q  +  1 ) )
12412nnzd 10111 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  ZZ )
125 1exp 11125 . . . . . . . . . . 11  |-  ( ( Q  +  1 )  e.  ZZ  ->  (
1 ^ ( Q  +  1 ) )  =  1 )
126124, 125syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ^ ( Q  +  1 ) )  =  1 )
127123, 126syl5eq 2328 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  1
) ^ ( Q  +  1 ) )  =  1 )
128127oveq1d 5834 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( 1  x.  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) ) )
129108recnd 8856 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  CC )
130129mulid2d 8848 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
131128, 130eqtrd 2316 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
132119, 122, 1313brtr3d 4053 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <_  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) )
13312nnred 9756 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  RR )
134133, 133readdcld 8857 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  e.  RR )
135133, 133remulcld 8858 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  e.  RR )
136 1re 8832 . . . . . . . . . . 11  |-  1  e.  RR
137136a1i 12 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
13811nnge1d 9783 . . . . . . . . . . 11  |-  ( ph  ->  1  <_  Q )
139 1nn 9752 . . . . . . . . . . . 12  |-  1  e.  NN
140 nnleltp1 10066 . . . . . . . . . . . 12  |-  ( ( 1  e.  NN  /\  Q  e.  NN )  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
141139, 11, 140sylancr 646 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
142138, 141mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( Q  +  1 ) )
143137, 133, 133, 142ltadd2dd 8970 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
14412nncnd 9757 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  CC )
1451442timesd 9949 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  =  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
146 df-2 9799 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
147137, 72, 137, 138leadd1dd 9381 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  1 )  <_  ( Q  +  1 ) )
148146, 147syl5eqbr 4057 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  ( Q  +  1 ) )
149 2re 9810 . . . . . . . . . . . . 13  |-  2  e.  RR
150149a1i 12 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR )
15112nngt0d 9784 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( Q  +  1 ) )
152 lemul1 9603 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( Q  +  1
)  e.  RR  /\  ( ( Q  + 
1 )  e.  RR  /\  0  <  ( Q  +  1 ) ) )  ->  ( 2  <_  ( Q  + 
1 )  <->  ( 2  x.  ( Q  + 
1 ) )  <_ 
( ( Q  + 
1 )  x.  ( Q  +  1 ) ) ) )
153150, 133, 133, 151, 152syl112anc 1188 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  <_  ( Q  +  1 )  <-> 
( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) ) )
154148, 153mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
155145, 154eqbrtrrd 4046 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
156104, 134, 135, 143, 155ltletrd 8971 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
157 facp1 11287 . . . . . . . . . . . . 13  |-  ( Q  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  =  ( ( ! `  Q )  x.  ( Q  +  1 ) ) )
15856, 157syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  =  ( ( ! `  Q )  x.  ( Q  + 
1 ) ) )
159158oveq1d 5834 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ( ! `  Q
)  x.  ( Q  +  1 ) )  /  ( ! `  Q ) ) )
160106nncnd 9757 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  CC )
16158nnne0d 9785 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  Q
)  =/=  0 )
162160, 59, 161divrecd 9534 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
163144, 59, 161divcan3d 9536 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( Q  +  1 ) )  /  ( ! `  Q )
)  =  ( Q  +  1 ) )
164159, 162, 1633eqtr3rd 2325 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
165164oveq1d 5834 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( 1  /  ( ! `  Q ) ) )  x.  ( Q  + 
1 ) ) )
166109recnd 8856 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  CC )
167160, 166, 144mul32d 9017 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( 1  /  ( ! `  Q )
) )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
168165, 167eqtrd 2316 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
169156, 168breqtrd 4048 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
170107nnred 9756 . . . . . . . 8  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  RR )
171107nngt0d 9784 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )
172 ltdivmul 9623 . . . . . . . 8  |-  ( ( ( ( Q  + 
1 )  +  1 )  e.  RR  /\  ( 1  /  ( ! `  Q )
)  e.  RR  /\  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  e.  RR  /\  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  ->  ( (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )  <  ( 1  / 
( ! `  Q
) )  <->  ( ( Q  +  1 )  +  1 )  < 
( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  x.  (
1  /  ( ! `
 Q ) ) ) ) )
173104, 109, 170, 171, 172syl112anc 1188 . . . . . . 7  |-  ( ph  ->  ( ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) )  <  (
1  /  ( ! `
 Q ) )  <-> 
( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) ) )
174169, 173mpbird 225 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  <  ( 1  /  ( ! `  Q ) ) )
17551, 108, 109, 132, 174lelttrd 8969 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <  ( 1  / 
( ! `  Q
) ) )
17651, 137, 100ltmuldiv2d 10429 . . . . 5  |-  ( ph  ->  ( ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  1  <->  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k )  < 
( 1  /  ( ! `  Q )
) ) )
177175, 176mpbird 225 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  1 )
178 0p1e1 9834 . . . 4  |-  ( 0  +  1 )  =  1
179177, 178syl6breqr 4064 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  ( 0  +  1 ) )
180 btwnnz 10083 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  /\  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  ( 0  +  1 ) )  ->  -.  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
18199, 102, 179, 180syl3anc 1184 . 2  |-  ( ph  ->  -.  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
18297, 181pm2.65i 167 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   class class class wbr 4024    e. cmpt 4078   dom cdm 4688   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   NN0cn0 9960   ZZcz 10019   ZZ>=cuz 10225   RR+crp 10349   ...cfz 10776    seq cseq 11040   ^cexp 11098   !cfa 11282   abscabs 11713    ~~> cli 11952   sum_csu 12152   _eceu 12338
This theorem is referenced by:  eirr  12477
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-pm 6770  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-ico 10656  df-fz 10777  df-fzo 10865  df-fl 10919  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-e 12344
  Copyright terms: Public domain W3C validator