HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ela Unicode version

Theorem ela 22915
Description: Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
ela  |-  ( A  e. HAtoms 
<->  ( A  e.  CH  /\  0H  <oH  A ) )

Proof of Theorem ela
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4028 . 2  |-  ( x  =  A  ->  ( 0H  <oH  x  <->  0H  <oH  A ) )
2 df-at 22914 . 2  |- HAtoms  =  {
x  e.  CH  |  0H  <oH  x }
31, 2elrab2 2926 1  |-  ( A  e. HAtoms 
<->  ( A  e.  CH  /\  0H  <oH  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1685   class class class wbr 4024   CHcch 21505   0Hc0h 21511    <oH ccv 21540  HAtomscat 21541
This theorem is referenced by:  elat2  22916  elatcv0  22917  atcv0  22918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-at 22914
  Copyright terms: Public domain W3C validator