MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls Unicode version

Theorem elcls 16772
Description: Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
elcls  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
Distinct variable groups:    x, J    x, P    x, S    x, X

Proof of Theorem elcls
StepHypRef Expression
1 clscld.1 . . . . . . . 8  |-  X  = 
U. J
21cmclsopn 16761 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( cls `  J
) `  S )
)  e.  J )
323adant3 980 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( X  \  ( ( cls `  J ) `  S
) )  e.  J
)
43adantr 453 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  ( X  \  ( ( cls `  J
) `  S )
)  e.  J )
5 eldif 3137 . . . . . . 7  |-  ( P  e.  ( X  \ 
( ( cls `  J
) `  S )
)  <->  ( P  e.  X  /\  -.  P  e.  ( ( cls `  J
) `  S )
) )
65biimpri 199 . . . . . 6  |-  ( ( P  e.  X  /\  -.  P  e.  (
( cls `  J
) `  S )
)  ->  P  e.  ( X  \  (
( cls `  J
) `  S )
) )
763ad2antl3 1124 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  P  e.  ( X  \  (
( cls `  J
) `  S )
) )
8 simpr 449 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  X )
91sscls 16755 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
108, 9ssind 3368 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( X  i^i  ( ( cls `  J
) `  S )
) )
11 dfin4 3384 . . . . . . . . . 10  |-  ( X  i^i  ( ( cls `  J ) `  S
) )  =  ( X  \  ( X 
\  ( ( cls `  J ) `  S
) ) )
1210, 11syl6sseq 3199 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( X  \ 
( X  \  (
( cls `  J
) `  S )
) ) )
13 reldisj 3473 . . . . . . . . . 10  |-  ( S 
C_  X  ->  (
( S  i^i  ( X  \  ( ( cls `  J ) `  S
) ) )  =  (/) 
<->  S  C_  ( X  \  ( X  \  (
( cls `  J
) `  S )
) ) ) )
1413adantl 454 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( S  i^i  ( X  \  (
( cls `  J
) `  S )
) )  =  (/)  <->  S  C_  ( X  \  ( X  \  ( ( cls `  J ) `  S
) ) ) ) )
1512, 14mpbird 225 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  i^i  ( X  \  ( ( cls `  J ) `  S
) ) )  =  (/) )
16 nne 2425 . . . . . . . . 9  |-  ( -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/)  <->  ( ( X 
\  ( ( cls `  J ) `  S
) )  i^i  S
)  =  (/) )
17 incom 3336 . . . . . . . . . 10  |-  ( ( X  \  ( ( cls `  J ) `
 S ) )  i^i  S )  =  ( S  i^i  ( X  \  ( ( cls `  J ) `  S
) ) )
1817eqeq1i 2265 . . . . . . . . 9  |-  ( ( ( X  \  (
( cls `  J
) `  S )
)  i^i  S )  =  (/)  <->  ( S  i^i  ( X  \  (
( cls `  J
) `  S )
) )  =  (/) )
1916, 18bitri 242 . . . . . . . 8  |-  ( -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/)  <->  ( S  i^i  ( X  \  (
( cls `  J
) `  S )
) )  =  (/) )
2015, 19sylibr 205 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/) )
21203adant3 980 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/) )
2221adantr 453 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  -.  (
( X  \  (
( cls `  J
) `  S )
)  i^i  S )  =/=  (/) )
23 eleq2 2319 . . . . . . 7  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( P  e.  x  <->  P  e.  ( X  \  ( ( cls `  J ) `  S
) ) ) )
24 ineq1 3338 . . . . . . . . 9  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( x  i^i  S )  =  ( ( X  \  (
( cls `  J
) `  S )
)  i^i  S )
)
2524neeq1d 2434 . . . . . . . 8  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( (
x  i^i  S )  =/=  (/)  <->  ( ( X 
\  ( ( cls `  J ) `  S
) )  i^i  S
)  =/=  (/) ) )
2625notbid 287 . . . . . . 7  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( -.  ( x  i^i  S )  =/=  (/)  <->  -.  ( ( X  \  ( ( cls `  J ) `  S
) )  i^i  S
)  =/=  (/) ) )
2723, 26anbi12d 694 . . . . . 6  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( ( P  e.  x  /\  -.  ( x  i^i  S
)  =/=  (/) )  <->  ( P  e.  ( X  \  (
( cls `  J
) `  S )
)  /\  -.  (
( X  \  (
( cls `  J
) `  S )
)  i^i  S )  =/=  (/) ) ) )
2827rcla4ev 2859 . . . . 5  |-  ( ( ( X  \  (
( cls `  J
) `  S )
)  e.  J  /\  ( P  e.  ( X  \  ( ( cls `  J ) `  S
) )  /\  -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/) ) )  ->  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i 
S )  =/=  (/) ) )
294, 7, 22, 28syl12anc 1185 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  E. x  e.  J  ( P  e.  x  /\  -.  (
x  i^i  S )  =/=  (/) ) )
30 incom 3336 . . . . . . . . . . . . 13  |-  ( S  i^i  x )  =  ( x  i^i  S
)
3130eqeq1i 2265 . . . . . . . . . . . 12  |-  ( ( S  i^i  x )  =  (/)  <->  ( x  i^i 
S )  =  (/) )
32 df-ne 2423 . . . . . . . . . . . . 13  |-  ( ( x  i^i  S )  =/=  (/)  <->  -.  ( x  i^i  S )  =  (/) )
3332con2bii 324 . . . . . . . . . . . 12  |-  ( ( x  i^i  S )  =  (/)  <->  -.  ( x  i^i  S )  =/=  (/) )
3431, 33bitri 242 . . . . . . . . . . 11  |-  ( ( S  i^i  x )  =  (/)  <->  -.  ( x  i^i  S )  =/=  (/) )
351opncld 16732 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( X  \  x
)  e.  ( Clsd `  J ) )
3635adantlr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  J
)  ->  ( X  \  x )  e.  (
Clsd `  J )
)
3736adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( X 
\  x )  e.  ( Clsd `  J
) )
38 reldisj 3473 . . . . . . . . . . . . . . . . . 18  |-  ( S 
C_  X  ->  (
( S  i^i  x
)  =  (/)  <->  S  C_  ( X  \  x ) ) )
3938biimpa 472 . . . . . . . . . . . . . . . . 17  |-  ( ( S  C_  X  /\  ( S  i^i  x
)  =  (/) )  ->  S  C_  ( X  \  x ) )
4039adantll 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( S  i^i  x
)  =  (/) )  ->  S  C_  ( X  \  x ) )
4140adantlr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  S  C_  ( X  \  x
) )
421clsss2 16771 . . . . . . . . . . . . . . 15  |-  ( ( ( X  \  x
)  e.  ( Clsd `  J )  /\  S  C_  ( X  \  x
) )  ->  (
( cls `  J
) `  S )  C_  ( X  \  x
) )
4337, 41, 42syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( ( cls `  J ) `
 S )  C_  ( X  \  x
) )
4443sseld 3154 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( P  e.  ( ( cls `  J ) `  S
)  ->  P  e.  ( X  \  x
) ) )
45 eldifn 3274 . . . . . . . . . . . . 13  |-  ( P  e.  ( X  \  x )  ->  -.  P  e.  x )
4644, 45syl6 31 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( P  e.  ( ( cls `  J ) `  S
)  ->  -.  P  e.  x ) )
4746con2d 109 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( P  e.  x  ->  -.  P  e.  ( ( cls `  J ) `  S ) ) )
4834, 47sylan2br 464 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  -.  ( x  i^i  S )  =/=  (/) )  ->  ( P  e.  x  ->  -.  P  e.  ( ( cls `  J ) `
 S ) ) )
4948exp31 590 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  J  ->  ( -.  ( x  i^i  S )  =/=  (/)  ->  ( P  e.  x  ->  -.  P  e.  ( ( cls `  J
) `  S )
) ) ) )
5049com34 79 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  J  ->  ( P  e.  x  ->  ( -.  ( x  i^i  S )  =/=  (/)  ->  -.  P  e.  ( ( cls `  J
) `  S )
) ) ) )
5150imp4a 575 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  J  ->  ( ( P  e.  x  /\  -.  (
x  i^i  S )  =/=  (/) )  ->  -.  P  e.  ( ( cls `  J ) `  S ) ) ) )
5251rexlimdv 2641 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( E. x  e.  J  ( P  e.  x  /\  -.  (
x  i^i  S )  =/=  (/) )  ->  -.  P  e.  ( ( cls `  J ) `  S ) ) )
5352imp 420 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i 
S )  =/=  (/) ) )  ->  -.  P  e.  ( ( cls `  J
) `  S )
)
54533adantl3 1118 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i 
S )  =/=  (/) ) )  ->  -.  P  e.  ( ( cls `  J
) `  S )
)
5529, 54impbida 808 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( -.  P  e.  (
( cls `  J
) `  S )  <->  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i  S
)  =/=  (/) ) ) )
56 rexanali 2564 . . 3  |-  ( E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i  S
)  =/=  (/) )  <->  -.  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
5755, 56syl6bb 254 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( -.  P  e.  (
( cls `  J
) `  S )  <->  -. 
A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) ) )
5857con4bid 286 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519    \ cdif 3124    i^i cin 3126    C_ wss 3127   (/)c0 3430   U.cuni 3801   ` cfv 4673   Topctop 16593   Clsdccld 16715   clsccl 16717
This theorem is referenced by:  elcls2  16773  clsndisj  16774  elcls3  16782  neindisj2  16822  lmcls  16992  1stccnp  17150  txcls  17261  dfac14lem  17273  fclsopn  17671  metdseq0  18320  islp3  24881
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-top 16598  df-cld 16718  df-ntr 16719  df-cls 16720
  Copyright terms: Public domain W3C validator