MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls Unicode version

Theorem elcls 16826
Description: Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
elcls  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
Distinct variable groups:    x, J    x, P    x, S    x, X

Proof of Theorem elcls
StepHypRef Expression
1 clscld.1 . . . . . . . 8  |-  X  = 
U. J
21cmclsopn 16815 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( cls `  J
) `  S )
)  e.  J )
323adant3 975 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( X  \  ( ( cls `  J ) `  S
) )  e.  J
)
43adantr 451 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  ( X  \  ( ( cls `  J
) `  S )
)  e.  J )
5 eldif 3175 . . . . . . 7  |-  ( P  e.  ( X  \ 
( ( cls `  J
) `  S )
)  <->  ( P  e.  X  /\  -.  P  e.  ( ( cls `  J
) `  S )
) )
65biimpri 197 . . . . . 6  |-  ( ( P  e.  X  /\  -.  P  e.  (
( cls `  J
) `  S )
)  ->  P  e.  ( X  \  (
( cls `  J
) `  S )
) )
763ad2antl3 1119 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  P  e.  ( X  \  (
( cls `  J
) `  S )
) )
8 simpr 447 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  X )
91sscls 16809 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
108, 9ssind 3406 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( X  i^i  ( ( cls `  J
) `  S )
) )
11 dfin4 3422 . . . . . . . . . 10  |-  ( X  i^i  ( ( cls `  J ) `  S
) )  =  ( X  \  ( X 
\  ( ( cls `  J ) `  S
) ) )
1210, 11syl6sseq 3237 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( X  \ 
( X  \  (
( cls `  J
) `  S )
) ) )
13 reldisj 3511 . . . . . . . . . 10  |-  ( S 
C_  X  ->  (
( S  i^i  ( X  \  ( ( cls `  J ) `  S
) ) )  =  (/) 
<->  S  C_  ( X  \  ( X  \  (
( cls `  J
) `  S )
) ) ) )
1413adantl 452 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( S  i^i  ( X  \  (
( cls `  J
) `  S )
) )  =  (/)  <->  S  C_  ( X  \  ( X  \  ( ( cls `  J ) `  S
) ) ) ) )
1512, 14mpbird 223 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  i^i  ( X  \  ( ( cls `  J ) `  S
) ) )  =  (/) )
16 nne 2463 . . . . . . . . 9  |-  ( -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/)  <->  ( ( X 
\  ( ( cls `  J ) `  S
) )  i^i  S
)  =  (/) )
17 incom 3374 . . . . . . . . . 10  |-  ( ( X  \  ( ( cls `  J ) `
 S ) )  i^i  S )  =  ( S  i^i  ( X  \  ( ( cls `  J ) `  S
) ) )
1817eqeq1i 2303 . . . . . . . . 9  |-  ( ( ( X  \  (
( cls `  J
) `  S )
)  i^i  S )  =  (/)  <->  ( S  i^i  ( X  \  (
( cls `  J
) `  S )
) )  =  (/) )
1916, 18bitri 240 . . . . . . . 8  |-  ( -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/)  <->  ( S  i^i  ( X  \  (
( cls `  J
) `  S )
) )  =  (/) )
2015, 19sylibr 203 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/) )
21203adant3 975 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/) )
2221adantr 451 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  -.  (
( X  \  (
( cls `  J
) `  S )
)  i^i  S )  =/=  (/) )
23 eleq2 2357 . . . . . . 7  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( P  e.  x  <->  P  e.  ( X  \  ( ( cls `  J ) `  S
) ) ) )
24 ineq1 3376 . . . . . . . . 9  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( x  i^i  S )  =  ( ( X  \  (
( cls `  J
) `  S )
)  i^i  S )
)
2524neeq1d 2472 . . . . . . . 8  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( (
x  i^i  S )  =/=  (/)  <->  ( ( X 
\  ( ( cls `  J ) `  S
) )  i^i  S
)  =/=  (/) ) )
2625notbid 285 . . . . . . 7  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( -.  ( x  i^i  S )  =/=  (/)  <->  -.  ( ( X  \  ( ( cls `  J ) `  S
) )  i^i  S
)  =/=  (/) ) )
2723, 26anbi12d 691 . . . . . 6  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  S )
)  ->  ( ( P  e.  x  /\  -.  ( x  i^i  S
)  =/=  (/) )  <->  ( P  e.  ( X  \  (
( cls `  J
) `  S )
)  /\  -.  (
( X  \  (
( cls `  J
) `  S )
)  i^i  S )  =/=  (/) ) ) )
2827rspcev 2897 . . . . 5  |-  ( ( ( X  \  (
( cls `  J
) `  S )
)  e.  J  /\  ( P  e.  ( X  \  ( ( cls `  J ) `  S
) )  /\  -.  ( ( X  \ 
( ( cls `  J
) `  S )
)  i^i  S )  =/=  (/) ) )  ->  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i 
S )  =/=  (/) ) )
294, 7, 22, 28syl12anc 1180 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  -.  P  e.  ( ( cls `  J
) `  S )
)  ->  E. x  e.  J  ( P  e.  x  /\  -.  (
x  i^i  S )  =/=  (/) ) )
30 incom 3374 . . . . . . . . . . . . 13  |-  ( S  i^i  x )  =  ( x  i^i  S
)
3130eqeq1i 2303 . . . . . . . . . . . 12  |-  ( ( S  i^i  x )  =  (/)  <->  ( x  i^i 
S )  =  (/) )
32 df-ne 2461 . . . . . . . . . . . . 13  |-  ( ( x  i^i  S )  =/=  (/)  <->  -.  ( x  i^i  S )  =  (/) )
3332con2bii 322 . . . . . . . . . . . 12  |-  ( ( x  i^i  S )  =  (/)  <->  -.  ( x  i^i  S )  =/=  (/) )
3431, 33bitri 240 . . . . . . . . . . 11  |-  ( ( S  i^i  x )  =  (/)  <->  -.  ( x  i^i  S )  =/=  (/) )
351opncld 16786 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( X  \  x
)  e.  ( Clsd `  J ) )
3635adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  J
)  ->  ( X  \  x )  e.  (
Clsd `  J )
)
3736adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( X 
\  x )  e.  ( Clsd `  J
) )
38 reldisj 3511 . . . . . . . . . . . . . . . . . 18  |-  ( S 
C_  X  ->  (
( S  i^i  x
)  =  (/)  <->  S  C_  ( X  \  x ) ) )
3938biimpa 470 . . . . . . . . . . . . . . . . 17  |-  ( ( S  C_  X  /\  ( S  i^i  x
)  =  (/) )  ->  S  C_  ( X  \  x ) )
4039adantll 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( S  i^i  x
)  =  (/) )  ->  S  C_  ( X  \  x ) )
4140adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  S  C_  ( X  \  x
) )
421clsss2 16825 . . . . . . . . . . . . . . 15  |-  ( ( ( X  \  x
)  e.  ( Clsd `  J )  /\  S  C_  ( X  \  x
) )  ->  (
( cls `  J
) `  S )  C_  ( X  \  x
) )
4337, 41, 42syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( ( cls `  J ) `
 S )  C_  ( X  \  x
) )
4443sseld 3192 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( P  e.  ( ( cls `  J ) `  S
)  ->  P  e.  ( X  \  x
) ) )
45 eldifn 3312 . . . . . . . . . . . . 13  |-  ( P  e.  ( X  \  x )  ->  -.  P  e.  x )
4644, 45syl6 29 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( P  e.  ( ( cls `  J ) `  S
)  ->  -.  P  e.  x ) )
4746con2d 107 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  ( S  i^i  x )  =  (/) )  ->  ( P  e.  x  ->  -.  P  e.  ( ( cls `  J ) `  S ) ) )
4834, 47sylan2br 462 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  x  e.  J )  /\  -.  ( x  i^i  S )  =/=  (/) )  ->  ( P  e.  x  ->  -.  P  e.  ( ( cls `  J ) `
 S ) ) )
4948exp31 587 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  J  ->  ( -.  ( x  i^i  S )  =/=  (/)  ->  ( P  e.  x  ->  -.  P  e.  ( ( cls `  J
) `  S )
) ) ) )
5049com34 77 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  J  ->  ( P  e.  x  ->  ( -.  ( x  i^i  S )  =/=  (/)  ->  -.  P  e.  ( ( cls `  J
) `  S )
) ) ) )
5150imp4a 572 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  J  ->  ( ( P  e.  x  /\  -.  (
x  i^i  S )  =/=  (/) )  ->  -.  P  e.  ( ( cls `  J ) `  S ) ) ) )
5251rexlimdv 2679 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( E. x  e.  J  ( P  e.  x  /\  -.  (
x  i^i  S )  =/=  (/) )  ->  -.  P  e.  ( ( cls `  J ) `  S ) ) )
5352imp 418 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i 
S )  =/=  (/) ) )  ->  -.  P  e.  ( ( cls `  J
) `  S )
)
54533adantl3 1113 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i 
S )  =/=  (/) ) )  ->  -.  P  e.  ( ( cls `  J
) `  S )
)
5529, 54impbida 805 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( -.  P  e.  (
( cls `  J
) `  S )  <->  E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i  S
)  =/=  (/) ) ) )
56 rexanali 2602 . . 3  |-  ( E. x  e.  J  ( P  e.  x  /\  -.  ( x  i^i  S
)  =/=  (/) )  <->  -.  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
5755, 56syl6bb 252 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( -.  P  e.  (
( cls `  J
) `  S )  <->  -. 
A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) ) )
5857con4bid 284 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   U.cuni 3843   ` cfv 5271   Topctop 16647   Clsdccld 16769   clsccl 16771
This theorem is referenced by:  elcls2  16827  clsndisj  16828  elcls3  16836  neindisj2  16876  lmcls  17046  1stccnp  17204  txcls  17315  dfac14lem  17327  fclsopn  17725  metdseq0  18374  islp3  25617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 16652  df-cld 16772  df-ntr 16773  df-cls 16774
  Copyright terms: Public domain W3C validator