MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcnv2 Unicode version

Theorem elcnv2 4812
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
elcnv2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem elcnv2
StepHypRef Expression
1 elcnv 4811 . 2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
2 df-br 3964 . . . 4  |-  ( y R x  <->  <. y ,  x >.  e.  R
)
32anbi2i 678 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  y R x )  <->  ( A  =  <. x ,  y
>.  /\  <. y ,  x >.  e.  R ) )
432exbii 1581 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  y R x )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
51, 4bitri 242 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   <.cop 3584   class class class wbr 3963   `'ccnv 4625
This theorem is referenced by:  cnvuni  4819
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-cnv 4642
  Copyright terms: Public domain W3C validator