Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Unicode version

Theorem eldioph4b 26997
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a  |-  W  e. 
_V
eldioph4b.b  |-  -.  W  e.  Fin
eldioph4b.c  |-  ( W  i^i  NN )  =  (/)
Assertion
Ref Expression
eldioph4b  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Distinct variable groups:    W, p, t, w    S, p, t, w    N, p, t, w

Proof of Theorem eldioph4b
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 26946 . 2  |-  ( S  e.  (Dioph `  N
)  ->  N  e.  NN0 )
2 eldioph4b.a . . . . . 6  |-  W  e. 
_V
3 ovex 5899 . . . . . 6  |-  ( 1 ... N )  e. 
_V
42, 3unex 4534 . . . . 5  |-  ( W  u.  ( 1 ... N ) )  e. 
_V
54jctr 526 . . . 4  |-  ( N  e.  NN0  ->  ( N  e.  NN0  /\  ( W  u.  ( 1 ... N ) )  e.  _V ) )
6 eldioph4b.b . . . . . . 7  |-  -.  W  e.  Fin
76intnanr 881 . . . . . 6  |-  -.  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin )
8 unfir 7141 . . . . . 6  |-  ( ( W  u.  ( 1 ... N ) )  e.  Fin  ->  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin ) )
97, 8mto 167 . . . . 5  |-  -.  ( W  u.  ( 1 ... N ) )  e.  Fin
10 ssun2 3352 . . . . 5  |-  ( 1 ... N )  C_  ( W  u.  (
1 ... N ) )
119, 10pm3.2i 441 . . . 4  |-  ( -.  ( W  u.  (
1 ... N ) )  e.  Fin  /\  (
1 ... N )  C_  ( W  u.  (
1 ... N ) ) )
12 eldioph2b 26945 . . . 4  |-  ( ( ( N  e.  NN0  /\  ( W  u.  (
1 ... N ) )  e.  _V )  /\  ( -.  ( W  u.  ( 1 ... N
) )  e.  Fin  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) ) )  ->  ( S  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
135, 11, 12sylancl 643 . . 3  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
14 elmapssres 26895 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  (
1 ... N ) )  e.  ( NN0  ^m  ( 1 ... N
) ) )
1510, 14mpan2 652 . . . . . . . . . . . . . 14  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
1615adantr 451 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
17 ssun1 3351 . . . . . . . . . . . . . . . 16  |-  W  C_  ( W  u.  (
1 ... N ) )
18 elmapssres 26895 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  W  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  W )  e.  ( NN0  ^m  W ) )
1917, 18mpan2 652 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
2019adantr 451 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
21 uncom 3332 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( ( u  |`  W )  u.  (
u  |`  ( 1 ... N ) ) )
22 resundi 4985 . . . . . . . . . . . . . . . . . . 19  |-  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  ( ( u  |`  W )  u.  ( u  |`  (
1 ... N ) ) )
2321, 22eqtr4i 2319 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( u  |`  ( W  u.  ( 1 ... N ) ) )
24 elmapi 6808 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  u :
( W  u.  (
1 ... N ) ) --> NN0 )
25 ffn 5405 . . . . . . . . . . . . . . . . . . 19  |-  ( u : ( W  u.  ( 1 ... N
) ) --> NN0  ->  u  Fn  ( W  u.  ( 1 ... N
) ) )
26 fnresdm 5369 . . . . . . . . . . . . . . . . . . 19  |-  ( u  Fn  ( W  u.  ( 1 ... N
) )  ->  (
u  |`  ( W  u.  ( 1 ... N
) ) )  =  u )
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  u )
2823, 27syl5eq 2340 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  u )
2928fveq2d 5545 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  ( p `
 u ) )
3029eqeq1d 2304 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0  <-> 
( p `  u
)  =  0 ) )
3130biimpar 471 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 )
32 uneq2 3336 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( u  |`  W )  ->  (
( u  |`  (
1 ... N ) )  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )
3332fveq2d 5545 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( u  |`  W )  ->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  ( u  |`  W ) ) ) )
3433eqeq1d 2304 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u  |`  W )  ->  (
( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0  <->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 ) )
3534rspcev 2897 . . . . . . . . . . . . . 14  |-  ( ( ( u  |`  W )  e.  ( NN0  ^m  W )  /\  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0 )  ->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 )
3620, 31, 35syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  E. w  e.  ( NN0  ^m  W ) ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0 )
3716, 36jca 518 . . . . . . . . . . . 12  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
38 eleq1 2356 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  e.  ( NN0 
^m  ( 1 ... N ) )  <->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) ) )
39 uneq1 3335 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  w
) )
4039fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
p `  ( t  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) ) )
4140eqeq1d 2304 . . . . . . . . . . . . . 14  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( p `  (
t  u.  w ) )  =  0  <->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  0 ) )
4241rexbidv 2577 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  ( E. w  e.  ( NN0  ^m  W ) ( p `  ( t  u.  w ) )  =  0  <->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
4338, 42anbi12d 691 . . . . . . . . . . . 12  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 )  <->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) ) )
4437, 43syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( t  =  ( u  |`  (
1 ... N ) )  ->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4544expimpd 586 . . . . . . . . . 10  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
( p `  u
)  =  0  /\  t  =  ( u  |`  ( 1 ... N
) ) )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4645ancomsd 440 . . . . . . . . 9  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4746rexlimiv 2674 . . . . . . . 8  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
48 uncom 3332 . . . . . . . . . . . . . 14  |-  ( t  u.  w )  =  ( w  u.  t
)
49 fz1ssnn 26995 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1 ... N )  C_  NN
50 sslin 3408 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1 ... N ) 
C_  NN  ->  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN ) )
5149, 50ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN )
52 eldioph4b.c . . . . . . . . . . . . . . . . . . . . 21  |-  ( W  i^i  NN )  =  (/)
5351, 52sseqtri 3223 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  i^i  ( 1 ... N ) )  C_  (/)
54 ss0 3498 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  i^i  ( 1 ... N ) ) 
C_  (/)  ->  ( W  i^i  ( 1 ... N
) )  =  (/) )
5553, 54ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( W  i^i  ( 1 ... N ) )  =  (/)
5655reseq2i 4968 . . . . . . . . . . . . . . . . . 18  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( w  |`  (/) )
57 res0 4975 . . . . . . . . . . . . . . . . . 18  |-  ( w  |`  (/) )  =  (/)
5856, 57eqtri 2316 . . . . . . . . . . . . . . . . 17  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
5955reseq2i 4968 . . . . . . . . . . . . . . . . . 18  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  (/) )
60 res0 4975 . . . . . . . . . . . . . . . . . 18  |-  ( t  |`  (/) )  =  (/)
6159, 60eqtri 2316 . . . . . . . . . . . . . . . . 17  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
6258, 61eqtr4i 2319 . . . . . . . . . . . . . . . 16  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  ( W  i^i  (
1 ... N ) ) )
63 elmapresaun 26953 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( w  u.  t )  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) )
6462, 63mp3an3 1266 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6564ancoms 439 . . . . . . . . . . . . . 14  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6648, 65syl5eqel 2380 . . . . . . . . . . . . 13  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6766adantr 451 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
t  u.  w )  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) ) )
6848reseq1i 4967 . . . . . . . . . . . . . 14  |-  ( ( t  u.  w )  |`  ( 1 ... N
) )  =  ( ( w  u.  t
)  |`  ( 1 ... N ) )
69 elmapresaunres2 26954 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( (
w  u.  t )  |`  ( 1 ... N
) )  =  t )
7062, 69mp3an3 1266 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7170ancoms 439 . . . . . . . . . . . . . 14  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7268, 71syl5req 2341 . . . . . . . . . . . . 13  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
7372adantr 451 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
74 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
p `  ( t  u.  w ) )  =  0 )
75 reseq1 4965 . . . . . . . . . . . . . . 15  |-  ( u  =  ( t  u.  w )  ->  (
u  |`  ( 1 ... N ) )  =  ( ( t  u.  w )  |`  (
1 ... N ) ) )
7675eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  u.  w )  ->  (
t  =  ( u  |`  ( 1 ... N
) )  <->  t  =  ( ( t  u.  w )  |`  (
1 ... N ) ) ) )
77 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( u  =  ( t  u.  w )  ->  (
p `  u )  =  ( p `  ( t  u.  w
) ) )
7877eqeq1d 2304 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  u.  w )  ->  (
( p `  u
)  =  0  <->  (
p `  ( t  u.  w ) )  =  0 ) )
7976, 78anbi12d 691 . . . . . . . . . . . . 13  |-  ( u  =  ( t  u.  w )  ->  (
( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( ( t  u.  w )  |`  (
1 ... N ) )  /\  ( p `  ( t  u.  w
) )  =  0 ) ) )
8079rspcev 2897 . . . . . . . . . . . 12  |-  ( ( ( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( t  =  ( ( t  u.  w
)  |`  ( 1 ... N ) )  /\  ( p `  (
t  u.  w ) )  =  0 ) )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8167, 73, 74, 80syl12anc 1180 . . . . . . . . . . 11  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8281ex 423 . . . . . . . . . 10  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( ( p `  ( t  u.  w
) )  =  0  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) ) )
8382rexlimdva 2680 . . . . . . . . 9  |-  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  ->  ( E. w  e.  ( NN0  ^m  W ) ( p `  ( t  u.  w ) )  =  0  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) ) )
8483imp 418 . . . . . . . 8  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0 
^m  W ) ( p `  ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) )
8547, 84impbii 180 . . . . . . 7  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  <->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
8685abbii 2408 . . . . . 6  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
87 df-rab 2565 . . . . . 6  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
8886, 87eqtr4i 2319 . . . . 5  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 }
8988eqeq2i 2306 . . . 4  |-  ( S  =  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  S  =  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
9089rexbii 2581 . . 3  |-  ( E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
9113, 90syl6bb 252 . 2  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 } ) )
921, 91biadan2 623 1  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   {crab 2560   _Vcvv 2801    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468    |` cres 4707    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   Fincfn 6879   0cc0 8753   1c1 8754   NNcn 9762   NN0cn0 9981   ...cfz 10798  mzPolycmzp 26903  Diophcdioph 26937
This theorem is referenced by:  eldioph4i  26998  diophren  26999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-hash 11354  df-mzpcl 26904  df-mzp 26905  df-dioph 26938
  Copyright terms: Public domain W3C validator