MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm2g Unicode version

Theorem eldm2g 4874
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Distinct variable groups:    y, A    y, B
Allowed substitution hint:    V( y)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 4873 . 2  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
2 df-br 4025 . . 3  |-  ( A B y  <->  <. A , 
y >.  e.  B )
32exbii 1569 . 2  |-  ( E. y  A B y  <->  E. y <. A ,  y
>.  e.  B )
41, 3syl6bb 252 1  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   E.wex 1528    e. wcel 1685   <.cop 3644   class class class wbr 4024    dom cdm 4688
This theorem is referenced by:  eldm2  4876  dmfco  5555  releldm2  6132  tfrlem9  6397  climcau  12140  caucvgb  12148  lmff  17025  axhcompl-zf  21574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-dm 4698
  Copyright terms: Public domain W3C validator