MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elec Unicode version

Theorem elec 6694
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
elec.1  |-  A  e. 
_V
elec.2  |-  B  e. 
_V
Assertion
Ref Expression
elec  |-  ( A  e.  [ B ] R 
<->  B R A )

Proof of Theorem elec
StepHypRef Expression
1 elec.1 . 2  |-  A  e. 
_V
2 elec.2 . 2  |-  B  e. 
_V
3 elecg 6693 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  e.  [ B ] R  <->  B R A ) )
41, 2, 3mp2an 655 1  |-  ( A  e.  [ B ] R 
<->  B R A )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    e. wcel 1685   _Vcvv 2789   class class class wbr 4024   [cec 6653
This theorem is referenced by:  ecid  6719  sylow2alem2  14923  sylow2a  14924  sylow2blem1  14925  efgval2  15027  efgrelexlemb  15053  efgcpbllemb  15058  frgpnabllem1  15155  tgpconcomp  17789  divstgphaus  17799  vitalilem2  18958  vitalilem3  18959  isbndx  25905  prtlem10  26132  prtlem19  26145  prter3  26149
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-opab 4079  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-ec 6657
  Copyright terms: Public domain W3C validator