MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfv Unicode version

Theorem elfv 5483
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Distinct variable groups:    x, A    x, y, B    x, F, y
Allowed substitution hint:    A( y)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5481 . . 3  |-  ( F `
 B )  = 
U. { x  | 
A. y ( B F y  <->  y  =  x ) }
21eleq2i 2347 . 2  |-  ( A  e.  ( F `  B )  <->  A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) } )
3 eluniab 3839 . 2  |-  ( A  e.  U. { x  |  A. y ( B F y  <->  y  =  x ) }  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
42, 3bitri 240 1  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   U.cuni 3827   class class class wbr 4023   ` cfv 5220
This theorem is referenced by:  fv3  5501  tz6.12-2  5507
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4693  df-cnv 4695  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fv 5228
  Copyright terms: Public domain W3C validator