Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfv Structured version   Unicode version

Theorem elfv 5727
 Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv
Distinct variable groups:   ,   ,,   ,,
Allowed substitution hint:   ()

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5724 . . 3
21eleq2i 2501 . 2
3 eluniab 4028 . 2
42, 3bitri 242 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360  wal 1550  wex 1551   wcel 1726  cab 2423  cuni 4016   class class class wbr 4213  cfv 5455 This theorem is referenced by:  fv3  5745 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-rex 2712  df-v 2959  df-sn 3821  df-uni 4017  df-iota 5419  df-fv 5463
 Copyright terms: Public domain W3C validator