MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2 Structured version   Unicode version

Theorem elicc2 11006
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 9161 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 9161 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 elicc1 10991 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
41, 2, 3syl2an 465 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
5 mnfxr 10745 . . . . . . . 8  |-  -oo  e.  RR*
65a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  e.  RR* )
71ad2antrr 708 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  e.  RR* )
8 simpr1 964 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR* )
9 mnflt 10753 . . . . . . . 8  |-  ( A  e.  RR  ->  -oo  <  A )
109ad2antrr 708 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  <  A )
11 simpr2 965 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  <_  C )
126, 7, 8, 10, 11xrltletrd 10782 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  -oo  <  C )
132ad2antlr 709 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  e.  RR* )
14 pnfxr 10744 . . . . . . . 8  |-  +oo  e.  RR*
1514a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  +oo  e.  RR* )
16 simpr3 966 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <_  B )
17 ltpnf 10752 . . . . . . . 8  |-  ( B  e.  RR  ->  B  <  +oo )
1817ad2antlr 709 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  <  +oo )
198, 13, 15, 16, 18xrlelttrd 10781 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <  +oo )
20 xrrebnd 10787 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  (  -oo  <  C  /\  C  <  +oo ) ) )
218, 20syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  <->  (  -oo  <  C  /\  C  <  +oo ) ) )
2212, 19, 21mpbir2and 890 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR )
2322, 11, 163jca 1135 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) )
2423ex 425 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
25 rexr 9161 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
26253anim1i 1141 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )
2724, 26impbid1 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
284, 27bitrd 246 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    e. wcel 1727   class class class wbr 4237  (class class class)co 6110   RRcr 9020    +oocpnf 9148    -oocmnf 9149   RR*cxr 9150    < clt 9151    <_ cle 9152   [,]cicc 10950
This theorem is referenced by:  elicc2i  11007  iccssre  11023  iccsupr  11028  iccneg  11049  iccsplit  11060  iccshftr  11061  iccshftl  11063  iccdil  11065  icccntr  11067  iccf1o  11070  icco1  12365  iccntr  18883  icccmplem1  18884  icccmplem2  18885  icccmplem3  18886  reconnlem1  18888  reconnlem2  18889  cnmpt2pc  18984  icoopnst  18995  iocopnst  18996  cnheiborlem  19010  ivthlem2  19380  ivthlem3  19381  ivthicc  19386  evthicc2  19388  ovolficc  19396  ovolicc1  19443  ovolicc2lem2  19445  ovolicc2lem5  19448  ovolicopnf  19451  dyadmaxlem  19520  opnmbllem  19524  volsup2  19528  volcn  19529  mbfi1fseqlem6  19641  itgspliticc  19757  itgsplitioo  19758  ditgcl  19776  ditgswap  19777  ditgsplitlem  19778  ditgsplit  19779  dvlip  19908  dvlip2  19910  dveq0  19915  dvgt0lem1  19917  dvivthlem1  19923  dvne0  19926  dvcnvrelem1  19932  dvcnvrelem2  19933  dvcnvre  19934  dvfsumlem2  19942  ftc1lem1  19950  ftc1lem2  19951  ftc1a  19952  ftc1lem4  19954  ftc2  19959  ftc2ditglem  19960  itgsubstlem  19963  pserulm  20369  loglesqr  20673  log2tlbnd  20816  ppisval  20917  chtleppi  21025  fsumvma2  21029  chpchtsum  21034  chpub  21035  rplogsumlem2  21210  chpdifbndlem1  21278  pntibndlem2a  21315  pntibndlem2  21316  pntlemj  21328  pntlem3  21334  pntleml  21336  rescon  24964  cvmliftlem10  25012  opnmbllem0  26278  ftc2nc  26327  areacirclem2  26331  areacirclem4  26333  areacirc  26335  isbnd3  26531  isbnd3b  26532  prdsbnd  26540  iccbnd  26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-pre-lttri 9095  ax-pre-lttrn 9096
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-po 4532  df-so 4533  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-icc 10954
  Copyright terms: Public domain W3C validator