MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima3 Unicode version

Theorem elima3 5056
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
elima.1  |-  A  e. 
_V
Assertion
Ref Expression
elima3  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  <. x ,  A >.  e.  B ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem elima3
StepHypRef Expression
1 elima.1 . . 3  |-  A  e. 
_V
21elima2 5055 . 2  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  x B A ) )
3 df-br 4061 . . . 4  |-  ( x B A  <->  <. x ,  A >.  e.  B
)
43anbi2i 675 . . 3  |-  ( ( x  e.  C  /\  x B A )  <->  ( x  e.  C  /\  <. x ,  A >.  e.  B
) )
54exbii 1573 . 2  |-  ( E. x ( x  e.  C  /\  x B A )  <->  E. x
( x  e.  C  /\  <. x ,  A >.  e.  B ) )
62, 5bitri 240 1  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  <. x ,  A >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1532    e. wcel 1701   _Vcvv 2822   <.cop 3677   class class class wbr 4060   "cima 4729
This theorem is referenced by:  cnvresima  5199  imaiun  5813  cnvresimaOLD  25375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-br 4061  df-opab 4115  df-xp 4732  df-cnv 4734  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739
  Copyright terms: Public domain W3C validator