MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimag Unicode version

Theorem elimag 5016
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
Assertion
Ref Expression
elimag  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Distinct variable groups:    x, A    x, B    x, C
Dummy variable  y is distinct from all other variables.
Allowed substitution hint:    V( x)

Proof of Theorem elimag
StepHypRef Expression
1 breq2 4029 . . 3  |-  ( y  =  A  ->  (
x B y  <->  x B A ) )
21rexbidv 2566 . 2  |-  ( y  =  A  ->  ( E. x  e.  C  x B y  <->  E. x  e.  C  x B A ) )
3 dfima2 5014 . 2  |-  ( B
" C )  =  { y  |  E. x  e.  C  x B y }
42, 3elab2g 2918 1  |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    = wceq 1624    e. wcel 1685   E.wrex 2546   class class class wbr 4025   "cima 4692
This theorem is referenced by:  elima  5017  fvelima  5536  afvelima  27409
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4214
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-br 4026  df-opab 4080  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator