MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliniseg Unicode version

Theorem eliniseg 5030
Description: Membership in an initial segment. The idiom  ( `' A " { B } ), meaning  { x  |  x A B }, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1  |-  C  e. 
_V
Assertion
Ref Expression
eliniseg  |-  ( B  e.  V  ->  ( C  e.  ( `' A " { B }
)  <->  C A B ) )

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2  |-  C  e. 
_V
2 elimasng 5027 . . . 4  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( C  e.  ( `' A " { B } )  <->  <. B ,  C >.  e.  `' A
) )
3 df-br 3998 . . . 4  |-  ( B `' A C  <->  <. B ,  C >.  e.  `' A
)
42, 3syl6bbr 256 . . 3  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( C  e.  ( `' A " { B } )  <->  B `' A C ) )
5 brcnvg 4850 . . 3  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( B `' A C 
<->  C A B ) )
64, 5bitrd 246 . 2  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( C  e.  ( `' A " { B } )  <->  C A B ) )
71, 6mpan2 655 1  |-  ( B  e.  V  ->  ( C  e.  ( `' A " { B }
)  <->  C A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   _Vcvv 2763   {csn 3614   <.cop 3617   class class class wbr 3997   `'ccnv 4660   "cima 4664
This theorem is referenced by:  epini  5031  iniseg  5032  dfco2a  5160  isomin  5768  isoini  5769  fnse  6166  infxpenlem  7609  fpwwe2lem8  8227  fpwwe2lem12  8231  fpwwe2lem13  8232  fpwwe2  8233  canth4  8237  canthwelem  8240  pwfseqlem4  8252  fz1isolem  11364  itg1addlem4  19016  elnlfn  22468  elpred  23546  pw2f1ocnv  26497
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682
  Copyright terms: Public domain W3C validator