MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrv Unicode version

Theorem elirrv 7311
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 7316 and efrirr 4374, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv  |-  -.  x  e.  x

Proof of Theorem elirrv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2343 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x } 
<->  x  e.  { x } ) )
2 vex 2791 . . . . 5  |-  x  e. 
_V
32snid 3667 . . . 4  |-  x  e. 
{ x }
41, 3speiv 1940 . . 3  |-  E. y 
y  e.  { x }
5 snex 4216 . . . 4  |-  { x }  e.  _V
65zfregcl 7308 . . 3  |-  ( E. y  y  e.  {
x }  ->  E. y  e.  { x } A. z  e.  y  -.  z  e.  { x } )
74, 6ax-mp 8 . 2  |-  E. y  e.  { x } A. z  e.  y  -.  z  e.  { x }
8 elsn 3655 . . . . . . 7  |-  ( y  e.  { x }  <->  y  =  x )
9 ax-14 1688 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  x  ->  x  e.  y )
)
109equcoms 1651 . . . . . . . 8  |-  ( y  =  x  ->  (
x  e.  x  ->  x  e.  y )
)
1110com12 27 . . . . . . 7  |-  ( x  e.  x  ->  (
y  =  x  ->  x  e.  y )
)
128, 11syl5bi 208 . . . . . 6  |-  ( x  e.  x  ->  (
y  e.  { x }  ->  x  e.  y ) )
13 eleq1 2343 . . . . . . . . 9  |-  ( z  =  x  ->  (
z  e.  { x } 
<->  x  e.  { x } ) )
1413notbid 285 . . . . . . . 8  |-  ( z  =  x  ->  ( -.  z  e.  { x } 
<->  -.  x  e.  {
x } ) )
1514rspccv 2881 . . . . . . 7  |-  ( A. z  e.  y  -.  z  e.  { x }  ->  ( x  e.  y  ->  -.  x  e.  { x } ) )
163, 15mt2i 110 . . . . . 6  |-  ( A. z  e.  y  -.  z  e.  { x }  ->  -.  x  e.  y )
1712, 16nsyli 133 . . . . 5  |-  ( x  e.  x  ->  ( A. z  e.  y  -.  z  e.  { x }  ->  -.  y  e.  { x } ) )
1817con2d 107 . . . 4  |-  ( x  e.  x  ->  (
y  e.  { x }  ->  -.  A. z  e.  y  -.  z  e.  { x } ) )
1918ralrimiv 2625 . . 3  |-  ( x  e.  x  ->  A. y  e.  { x }  -.  A. z  e.  y  -.  z  e.  { x } )
20 ralnex 2553 . . 3  |-  ( A. y  e.  { x }  -.  A. z  e.  y  -.  z  e. 
{ x }  <->  -.  E. y  e.  { x } A. z  e.  y  -.  z  e.  { x } )
2119, 20sylib 188 . 2  |-  ( x  e.  x  ->  -.  E. y  e.  { x } A. z  e.  y  -.  z  e.  {
x } )
227, 21mt2 170 1  |-  -.  x  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {csn 3640
This theorem is referenced by:  elirr  7312  ruv  7314  dfac2  7757  nd1  8209  nd2  8210  nd3  8211  axunnd  8218  axregndlem1  8224  axregndlem2  8225  axregnd  8226  elpotr  24137  distel  24160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-dif 3155  df-un 3157  df-nul 3456  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator