Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellz1 Unicode version

Theorem ellz1 26012
Description: Membership in a set of lower integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
ellz1  |-  ( B  e.  ZZ  ->  ( A  e.  ( ZZ  \  ( ZZ>= `  ( B  +  1 ) ) )  <->  ( A  e.  ZZ  /\  A  <_  B ) ) )

Proof of Theorem ellz1
StepHypRef Expression
1 eldif 3088 . 2  |-  ( A  e.  ( ZZ  \ 
( ZZ>= `  ( B  +  1 ) ) )  <->  ( A  e.  ZZ  /\  -.  A  e.  ( ZZ>= `  ( B  +  1 ) ) ) )
2 zltp1le 9946 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  ( B  +  1 )  <_  A ) )
32notbid 287 . . . 4  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( -.  B  < 
A  <->  -.  ( B  +  1 )  <_  A ) )
4 zre 9907 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
5 zre 9907 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  RR )
6 lenlt 8781 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
74, 5, 6syl2anr 466 . . . 4  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  <_  B  <->  -.  B  <  A ) )
8 peano2z 9939 . . . . . 6  |-  ( B  e.  ZZ  ->  ( B  +  1 )  e.  ZZ )
9 eluz 10120 . . . . . 6  |-  ( ( ( B  +  1 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  (
ZZ>= `  ( B  + 
1 ) )  <->  ( B  +  1 )  <_  A ) )
108, 9sylan 459 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  (
ZZ>= `  ( B  + 
1 ) )  <->  ( B  +  1 )  <_  A ) )
1110notbid 287 . . . 4  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( -.  A  e.  ( ZZ>= `  ( B  +  1 ) )  <->  -.  ( B  +  1 )  <_  A )
)
123, 7, 113bitr4rd 279 . . 3  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( -.  A  e.  ( ZZ>= `  ( B  +  1 ) )  <-> 
A  <_  B )
)
1312pm5.32da 625 . 2  |-  ( B  e.  ZZ  ->  (
( A  e.  ZZ  /\ 
-.  A  e.  (
ZZ>= `  ( B  + 
1 ) ) )  <-> 
( A  e.  ZZ  /\  A  <_  B )
) )
141, 13syl5bb 250 1  |-  ( B  e.  ZZ  ->  ( A  e.  ( ZZ  \  ( ZZ>= `  ( B  +  1 ) ) )  <->  ( A  e.  ZZ  /\  A  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621    \ cdif 3075   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   RRcr 8616   1c1 8618    + caddc 8620    < clt 8747    <_ cle 8748   ZZcz 9903   ZZ>=cuz 10109
This theorem is referenced by:  lzunuz  26013  fz1eqin  26014  lzenom  26015
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-n0 9845  df-z 9904  df-uz 10110
  Copyright terms: Public domain W3C validator