MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmpt2cl Unicode version

Theorem elmpt2cl 6077
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpt2cl.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elmpt2cl  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Distinct variable groups:    x, A, y    x, B, y
Allowed substitution hints:    C( x, y)    S( x, y)    T( x, y)    F( x, y)    X( x, y)

Proof of Theorem elmpt2cl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elmpt2cl.f . . . . . 6  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpt2 5879 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2316 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43dmeqi 4896 . . . 4  |-  dom  F  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 dmoprabss 5945 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  C_  ( A  X.  B
)
64, 5eqsstri 3221 . . 3  |-  dom  F  C_  ( A  X.  B
)
7 elfvdm 5570 . . . 4  |-  ( X  e.  ( F `  <. S ,  T >. )  ->  <. S ,  T >.  e.  dom  F )
8 df-ov 5877 . . . 4  |-  ( S F T )  =  ( F `  <. S ,  T >. )
97, 8eleq2s 2388 . . 3  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  dom  F
)
106, 9sseldi 3191 . 2  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  ( A  X.  B ) )
11 opelxp 4735 . 2  |-  ( <. S ,  T >.  e.  ( A  X.  B
)  <->  ( S  e.  A  /\  T  e.  B ) )
1210, 11sylib 188 1  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   <.cop 3656    X. cxp 4703   dom cdm 4705   ` cfv 5271  (class class class)co 5874   {coprab 5875    e. cmpt2 5876
This theorem is referenced by:  elmpt2cl1  6078  elmpt2cl2  6079  elovmpt2  6080  ixxssixx  10686  funcrcl  13753  natrcl  13840  ismhm  14433  isghm  14699  isga  14761  isslw  14935  isrhm  15517  islmhm  15800  iscn2  16984  elflim2  17675  isfcls  17720  isnmhm  18271  limcrcl  19240  iscvm  23805  iseupa  23896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-dm 4715  df-iota 5235  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator