MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnei Unicode version

Theorem elnei 16796
Description: A point belongs to any of its neighborhoods. Proposition Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
elnei  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  P  e.  N
)

Proof of Theorem elnei
StepHypRef Expression
1 ssnei 16795 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  { P }  C_  N )
213adant2 979 . 2  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  { P }  C_  N )
3 snssg 3714 . . 3  |-  ( P  e.  A  ->  ( P  e.  N  <->  { P }  C_  N ) )
433ad2ant2 982 . 2  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  ( P  e.  N  <->  { P }  C_  N ) )
52, 4mpbird 225 1  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  P  e.  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 939    e. wcel 1621    C_ wss 3113   {csn 3600   ` cfv 4659   Topctop 16579   neicnei 16782
This theorem is referenced by:  exopcopn  24925
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-top 16584  df-nei 16783
  Copyright terms: Public domain W3C validator