Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnev Unicode version

Theorem elnev 27037
Description: Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.)
Assertion
Ref Expression
elnev  |-  ( A  e.  _V  <->  { x  |  -.  x  =  A }  =/=  _V )
Distinct variable group:    x, A

Proof of Theorem elnev
StepHypRef Expression
1 isset 2793 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
2 df-v 2791 . . . . 5  |-  _V  =  { x  |  x  =  x }
32eqeq2i 2294 . . . 4  |-  ( { x  |  -.  x  =  A }  =  _V  <->  { x  |  -.  x  =  A }  =  {
x  |  x  =  x } )
4 equid 1646 . . . . . . 7  |-  x  =  x
54tbt 335 . . . . . 6  |-  ( -.  x  =  A  <->  ( -.  x  =  A  <->  x  =  x ) )
65albii 1554 . . . . 5  |-  ( A. x  -.  x  =  A  <->  A. x ( -.  x  =  A  <->  x  =  x
) )
7 alnex 1531 . . . . 5  |-  ( A. x  -.  x  =  A  <->  -.  E. x  x  =  A )
8 abbi 2394 . . . . 5  |-  ( A. x ( -.  x  =  A  <->  x  =  x
)  <->  { x  |  -.  x  =  A }  =  { x  |  x  =  x } )
96, 7, 83bitr3ri 269 . . . 4  |-  ( { x  |  -.  x  =  A }  =  {
x  |  x  =  x }  <->  -.  E. x  x  =  A )
103, 9bitri 242 . . 3  |-  ( { x  |  -.  x  =  A }  =  _V  <->  -. 
E. x  x  =  A )
1110necon2abii 2502 . 2  |-  ( E. x  x  =  A  <->  { x  |  -.  x  =  A }  =/=  _V )
121, 11bitri 242 1  |-  ( A  e.  _V  <->  { x  |  -.  x  =  A }  =/=  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178   A.wal 1528   E.wex 1529    = wceq 1624    e. wcel 1685   {cab 2270    =/= wne 2447   _Vcvv 2789
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2271  df-cleq 2277  df-clel 2280  df-ne 2449  df-v 2791
  Copyright terms: Public domain W3C validator