Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnn0rabdioph Unicode version

Theorem elnn0rabdioph 26895
Description: Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
elnn0rabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  e.  NN0 }  e.  (Dioph `  N
) )
Distinct variable group:    t, N
Allowed substitution hint:    A( t)

Proof of Theorem elnn0rabdioph
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 risset 2592 . . . . . 6  |-  ( A  e.  NN0  <->  E. b  e.  NN0  b  =  A )
21a1i 10 . . . . 5  |-  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  ->  ( A  e.  NN0  <->  E. b  e.  NN0  b  =  A ) )
32rabbiia 2780 . . . 4  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  A  e.  NN0 }  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  b  =  A }
43a1i 10 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  e.  NN0 }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  b  =  A } )
5 nfcv 2421 . . . 4  |-  F/_ t
( NN0  ^m  (
1 ... N ) )
6 nfcv 2421 . . . 4  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
7 nfv 1607 . . . 4  |-  F/ a E. b  e.  NN0  b  =  A
8 nfcv 2421 . . . . 5  |-  F/_ t NN0
9 nfcsb1v 3115 . . . . . 6  |-  F/_ t [_ a  /  t ]_ A
109nfeq2 2432 . . . . 5  |-  F/ t  b  =  [_ a  /  t ]_ A
118, 10nfrex 2600 . . . 4  |-  F/ t E. b  e.  NN0  b  =  [_ a  / 
t ]_ A
12 csbeq1a 3091 . . . . . 6  |-  ( t  =  a  ->  A  =  [_ a  /  t ]_ A )
1312eqeq2d 2296 . . . . 5  |-  ( t  =  a  ->  (
b  =  A  <->  b  =  [_ a  /  t ]_ A ) )
1413rexbidv 2566 . . . 4  |-  ( t  =  a  ->  ( E. b  e.  NN0  b  =  A  <->  E. b  e.  NN0  b  =  [_ a  /  t ]_ A
) )
155, 6, 7, 11, 14cbvrab 2788 . . 3  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  b  =  A }  =  {
a  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  b  =  [_ a  / 
t ]_ A }
164, 15syl6eq 2333 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  e.  NN0 }  =  { a  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  b  =  [_ a  /  t ]_ A } )
17 peano2nn0 10006 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
1817adantr 451 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( N  +  1 )  e.  NN0 )
19 ovex 5885 . . . . 5  |-  ( 1 ... ( N  + 
1 ) )  e. 
_V
20 nn0p1nn 10005 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
21 elfz1end 10822 . . . . . . 7  |-  ( ( N  +  1 )  e.  NN  <->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
2220, 21sylib 188 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
2322adantr 451 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( N  +  1 )  e.  ( 1 ... ( N  + 
1 ) ) )
24 mzpproj 26826 . . . . 5  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  _V  /\  ( N  +  1
)  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
2519, 23, 24sylancr 644 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
26 eqid 2285 . . . . 5  |-  ( N  +  1 )  =  ( N  +  1 )
2726rabdiophlem2 26894 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
28 eqrabdioph 26868 . . . 4  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( c `  ( N  +  1
) )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A }  e.  (Dioph `  ( N  +  1 ) ) )
2918, 25, 27, 28syl3anc 1182 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( c `  ( N  +  1
) )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A }  e.  (Dioph `  ( N  +  1 ) ) )
30 eqeq1 2291 . . . 4  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
b  =  [_ a  /  t ]_ A  <->  ( c `  ( N  +  1 ) )  =  [_ a  / 
t ]_ A ) )
31 csbeq1 3086 . . . . 5  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  [_ a  /  t ]_ A  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )
3231eqeq2d 2296 . . . 4  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( c `  ( N  +  1 ) )  =  [_ a  /  t ]_ A  <->  ( c `  ( N  +  1 ) )  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )
3326, 30, 32rexrabdioph 26886 . . 3  |-  ( ( N  e.  NN0  /\  { c  e.  ( NN0 
^m  ( 1 ... ( N  +  1 ) ) )  |  ( c `  ( N  +  1 ) )  =  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ A }  e.  (Dioph `  ( N  + 
1 ) ) )  ->  { a  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  b  =  [_ a  /  t ]_ A }  e.  (Dioph `  N
) )
3429, 33syldan 456 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  b  =  [_ a  /  t ]_ A }  e.  (Dioph `  N
) )
3516, 34eqeltrd 2359 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  e.  NN0 }  e.  (Dioph `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   E.wrex 2546   {crab 2549   _Vcvv 2790   [_csb 3083    e. cmpt 4079    |` cres 4693   ` cfv 5257  (class class class)co 5860    ^m cmap 6774   1c1 8740    + caddc 8742   NNcn 9748   NN0cn0 9967   ZZcz 10026   ...cfz 10784  mzPolycmzp 26811  Diophcdioph 26845
This theorem is referenced by:  lerabdioph  26897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-n0 9968  df-z 10027  df-uz 10233  df-fz 10785  df-hash 11340  df-mzpcl 26812  df-mzp 26813  df-dioph 26846
  Copyright terms: Public domain W3C validator