MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpt2 Structured version   Unicode version

Theorem elovmpt2 6294
Description: Utility lemma for two-parameter classes.

EDITORIAL: can simplify isghm 15011, islmhm 16108. (Contributed by Stefan O'Rear, 21-Jan-2015.)

Hypotheses
Ref Expression
elovmpt2.d  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpt2.c  |-  C  e. 
_V
elovmpt2.e  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
Assertion
Ref Expression
elovmpt2  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Distinct variable groups:    A, a,
b    B, a, b    E, a, b    F, a, b    X, a, b    Y, a, b
Allowed substitution hints:    C( a, b)    D( a, b)

Proof of Theorem elovmpt2
StepHypRef Expression
1 elovmpt2.d . . . 4  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
21elmpt2cl 6291 . . 3  |-  ( F  e.  ( X D Y )  ->  ( X  e.  A  /\  Y  e.  B )
)
3 elovmpt2.c . . . . . . 7  |-  C  e. 
_V
43gen2 1557 . . . . . 6  |-  A. a A. b  C  e.  _V
5 elovmpt2.e . . . . . . . 8  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
65eleq1d 2504 . . . . . . 7  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( C  e.  _V  <->  E  e.  _V ) )
76spc2gv 3041 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( A. a A. b  C  e.  _V  ->  E  e.  _V )
)
84, 7mpi 17 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  E  e.  _V )
95, 1ovmpt2ga 6206 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B  /\  E  e.  _V )  ->  ( X D Y )  =  E )
108, 9mpd3an3 1281 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X D Y )  =  E )
1110eleq2d 2505 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( F  e.  ( X D Y )  <-> 
F  e.  E ) )
122, 11biadan2 625 . 2  |-  ( F  e.  ( X D Y )  <->  ( ( X  e.  A  /\  Y  e.  B )  /\  F  e.  E
) )
13 df-3an 939 . 2  |-  ( ( X  e.  A  /\  Y  e.  B  /\  F  e.  E )  <->  ( ( X  e.  A  /\  Y  e.  B
)  /\  F  e.  E ) )
1412, 13bitr4i 245 1  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   A.wal 1550    = wceq 1653    e. wcel 1726   _Vcvv 2958  (class class class)co 6084    e. cmpt2 6086
This theorem is referenced by:  isgim  15054  oppglsm  15281  islmim  16139  wlkelwrd  28333  wlkcompim  28340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089
  Copyright terms: Public domain W3C validator