Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpotr Unicode version

Theorem elpotr 25351
Description: A class of transitive sets is partially ordered by  _E. (Contributed by Scott Fenton, 15-Oct-2010.)
Assertion
Ref Expression
elpotr  |-  ( A. z  e.  A  Tr  z  ->  _E  Po  A
)
Distinct variable group:    z, A

Proof of Theorem elpotr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alral 2724 . . . . . 6  |-  ( A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
21alimi 1565 . . . . 5  |-  ( A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
3 alral 2724 . . . . 5  |-  ( A. x A. y  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x  e.  A  A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
42, 3syl 16 . . . 4  |-  ( A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x  e.  A  A. y  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
54ralimi 2741 . . 3  |-  ( A. z  e.  A  A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. z  e.  A  A. x  e.  A  A. y  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
6 ralcom 2828 . . . 4  |-  ( A. z  e.  A  A. x  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. z  e.  A  A. y  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
7 ralcom 2828 . . . . 5  |-  ( A. z  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
87ralbii 2690 . . . 4  |-  ( A. x  e.  A  A. z  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
96, 8bitri 241 . . 3  |-  ( A. z  e.  A  A. x  e.  A  A. y  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
105, 9sylib 189 . 2  |-  ( A. z  e.  A  A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
11 dftr2 4264 . . 3  |-  ( Tr  z  <->  A. x A. y
( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
1211ralbii 2690 . 2  |-  ( A. z  e.  A  Tr  z 
<-> 
A. z  e.  A  A. x A. y ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
13 df-po 4463 . . 3  |-  (  _E  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
14 epel 4457 . . . . . . . 8  |-  ( x  _E  y  <->  x  e.  y )
15 epel 4457 . . . . . . . 8  |-  ( y  _E  z  <->  y  e.  z )
1614, 15anbi12i 679 . . . . . . 7  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
17 epel 4457 . . . . . . 7  |-  ( x  _E  z  <->  x  e.  z )
1816, 17imbi12i 317 . . . . . 6  |-  ( ( ( x  _E  y  /\  y  _E  z
)  ->  x  _E  z )  <->  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
19 elirrv 7521 . . . . . . . 8  |-  -.  x  e.  x
20 epel 4457 . . . . . . . 8  |-  ( x  _E  x  <->  x  e.  x )
2119, 20mtbir 291 . . . . . . 7  |-  -.  x  _E  x
2221biantrur 493 . . . . . 6  |-  ( ( ( x  _E  y  /\  y  _E  z
)  ->  x  _E  z )  <->  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
2318, 22bitr3i 243 . . . . 5  |-  ( ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
2423ralbii 2690 . . . 4  |-  ( A. z  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. z  e.  A  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
25242ralbii 2692 . . 3  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x  _E  x  /\  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
2613, 25bitr4i 244 . 2  |-  (  _E  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
2710, 12, 263imtr4i 258 1  |-  ( A. z  e.  A  Tr  z  ->  _E  Po  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1546   A.wral 2666   class class class wbr 4172   Tr wtr 4262    _E cep 4452    Po wpo 4461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-reg 7516
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463
  Copyright terms: Public domain W3C validator