MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrestr Unicode version

Theorem elrestr 13585
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrestr  |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J )  ->  ( A  i^i  S
)  e.  ( Jt  S ) )

Proof of Theorem elrestr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2389 . . . 4  |-  ( A  i^i  S )  =  ( A  i^i  S
)
2 ineq1 3480 . . . . . 6  |-  ( x  =  A  ->  (
x  i^i  S )  =  ( A  i^i  S ) )
32eqeq2d 2400 . . . . 5  |-  ( x  =  A  ->  (
( A  i^i  S
)  =  ( x  i^i  S )  <->  ( A  i^i  S )  =  ( A  i^i  S ) ) )
43rspcev 2997 . . . 4  |-  ( ( A  e.  J  /\  ( A  i^i  S )  =  ( A  i^i  S ) )  ->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i  S ) )
51, 4mpan2 653 . . 3  |-  ( A  e.  J  ->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i  S ) )
6 elrest 13584 . . 3  |-  ( ( J  e.  V  /\  S  e.  W )  ->  ( ( A  i^i  S )  e.  ( Jt  S )  <->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i 
S ) ) )
75, 6syl5ibr 213 . 2  |-  ( ( J  e.  V  /\  S  e.  W )  ->  ( A  e.  J  ->  ( A  i^i  S
)  e.  ( Jt  S ) ) )
873impia 1150 1  |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J )  ->  ( A  i^i  S
)  e.  ( Jt  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2652    i^i cin 3264  (class class class)co 6022   ↾t crest 13577
This theorem is referenced by:  firest  13589  restbas  17146  tgrest  17147  resttopon  17149  restcld  17160  restfpw  17167  neitr  17168  restntr  17170  ordtrest  17190  cnrest  17273  lmss  17286  consubclo  17410  restnlly  17468  islly2  17470  cldllycmp  17481  lly1stc  17482  kgenss  17498  xkococnlem  17614  xkoinjcn  17642  qtoprest  17672  trfbas2  17798  trfil1  17841  trfil2  17842  fgtr  17845  trfg  17846  uzrest  17852  trufil  17865  flimrest  17938  cnextcn  18021  trust  18182  restutop  18190  trcfilu  18247  cfiluweak  18248  xrsmopn  18716  zdis  18720  xrge0tsms  18738  cnheibor  18853  cfilres  19122  lhop2  19768  psercn  20211  xrlimcnp  20676  xrge0tsmsd  24054  pnfneige0  24142  lmxrge0  24143  rrhre  24185  cvmscld  24741  cvmopnlem  24746  cvmliftmolem1  24749  subspopn  26151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-rest 13579
  Copyright terms: Public domain W3C validator