MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrestr Unicode version

Theorem elrestr 13335
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrestr  |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J )  ->  ( A  i^i  S
)  e.  ( Jt  S ) )

Proof of Theorem elrestr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2285 . . . 4  |-  ( A  i^i  S )  =  ( A  i^i  S
)
2 ineq1 3365 . . . . . 6  |-  ( x  =  A  ->  (
x  i^i  S )  =  ( A  i^i  S ) )
32eqeq2d 2296 . . . . 5  |-  ( x  =  A  ->  (
( A  i^i  S
)  =  ( x  i^i  S )  <->  ( A  i^i  S )  =  ( A  i^i  S ) ) )
43rspcev 2886 . . . 4  |-  ( ( A  e.  J  /\  ( A  i^i  S )  =  ( A  i^i  S ) )  ->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i  S ) )
51, 4mpan2 652 . . 3  |-  ( A  e.  J  ->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i  S ) )
6 elrest 13334 . . 3  |-  ( ( J  e.  V  /\  S  e.  W )  ->  ( ( A  i^i  S )  e.  ( Jt  S )  <->  E. x  e.  J  ( A  i^i  S )  =  ( x  i^i 
S ) ) )
75, 6syl5ibr 212 . 2  |-  ( ( J  e.  V  /\  S  e.  W )  ->  ( A  e.  J  ->  ( A  i^i  S
)  e.  ( Jt  S ) ) )
873impia 1148 1  |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J )  ->  ( A  i^i  S
)  e.  ( Jt  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   E.wrex 2546    i^i cin 3153  (class class class)co 5860   ↾t crest 13327
This theorem is referenced by:  firest  13339  restbas  16891  tgrest  16892  resttopon  16894  restcld  16905  restfpw  16912  restntr  16914  ordtrest  16934  cnrest  17015  lmss  17028  consubclo  17152  restnlly  17210  islly2  17212  cldllycmp  17223  lly1stc  17224  kgenss  17240  xkococnlem  17355  xkoinjcn  17383  qtoprest  17410  trfbas2  17540  trfil1  17583  trfil2  17584  fgtr  17587  trfg  17588  uzrest  17594  trufil  17607  flimrest  17680  xrsmopn  18320  zdis  18324  xrge0tsms  18341  cnheibor  18455  cfilres  18724  lhop2  19364  psercn  19804  xrlimcnp  20265  pnfneige0  23376  lmxrge0  23377  xrge0tsmsd  23384  cvmscld  23806  cvmopnlem  23811  cvmliftmolem1  23814  islimrs3  25592  subspopn  26477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-rest 13329
  Copyright terms: Public domain W3C validator