Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfi Unicode version

Theorem elrfi 26685
Description: Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfi  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
Distinct variable groups:    v, A    v, B    v, C    v, V

Proof of Theorem elrfi
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2956 . . 3  |-  ( A  e.  ( fi `  ( { B }  u.  C ) )  ->  A  e.  _V )
21a1i 11 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  ->  A  e.  _V ) )
3 inex1g 4338 . . . . 5  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  e. 
_V )
4 eleq1 2495 . . . . 5  |-  ( A  =  ( B  i^i  |^| v )  ->  ( A  e.  _V  <->  ( B  i^i  |^| v )  e. 
_V ) )
53, 4syl5ibrcom 214 . . . 4  |-  ( B  e.  V  ->  ( A  =  ( B  i^i  |^| v )  ->  A  e.  _V )
)
65rexlimdvw 2825 . . 3  |-  ( B  e.  V  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v )  ->  A  e.  _V )
)
76adantr 452 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
)  ->  A  e.  _V ) )
8 simpr 448 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  A  e. 
_V )
9 snex 4397 . . . . . 6  |-  { B }  e.  _V
10 pwexg 4375 . . . . . . . 8  |-  ( B  e.  V  ->  ~P B  e.  _V )
1110ad2antrr 707 . . . . . . 7  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ~P B  e.  _V )
12 simplr 732 . . . . . . 7  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  C  C_  ~P B )
1311, 12ssexd 4342 . . . . . 6  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  C  e. 
_V )
14 unexg 4701 . . . . . 6  |-  ( ( { B }  e.  _V  /\  C  e.  _V )  ->  ( { B }  u.  C )  e.  _V )
159, 13, 14sylancr 645 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( { B }  u.  C
)  e.  _V )
16 elfi 7409 . . . . 5  |-  ( ( A  e.  _V  /\  ( { B }  u.  C )  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin ) A  =  |^| w ) )
178, 15, 16syl2anc 643 . . . 4  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C ) )  <->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin ) A  =  |^| w ) )
18 inss1 3553 . . . . . . . . . . . 12  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  ~P ( { B }  u.  C
)
19 uncom 3483 . . . . . . . . . . . . 13  |-  ( { B }  u.  C
)  =  ( C  u.  { B }
)
2019pweqi 3795 . . . . . . . . . . . 12  |-  ~P ( { B }  u.  C
)  =  ~P ( C  u.  { B } )
2118, 20sseqtri 3372 . . . . . . . . . . 11  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  ~P ( C  u.  { B }
)
2221sseli 3336 . . . . . . . . . 10  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  ~P ( C  u.  { B } ) )
239elpwun 4747 . . . . . . . . . 10  |-  ( w  e.  ~P ( C  u.  { B }
)  <->  ( w  \  { B } )  e. 
~P C )
2422, 23sylib 189 . . . . . . . . 9  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  ( w  \  { B } )  e.  ~P C )
2524ad2antrl 709 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  ~P C )
26 inss2 3554 . . . . . . . . . . 11  |-  ( ~P ( { B }  u.  C )  i^i  Fin )  C_  Fin
2726sseli 3336 . . . . . . . . . 10  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  Fin )
28 diffi 7330 . . . . . . . . . 10  |-  ( w  e.  Fin  ->  (
w  \  { B } )  e.  Fin )
2927, 28syl 16 . . . . . . . . 9  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  ( w  \  { B } )  e.  Fin )
3029ad2antrl 709 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  Fin )
31 elin 3522 . . . . . . . 8  |-  ( ( w  \  { B } )  e.  ( ~P C  i^i  Fin ) 
<->  ( ( w  \  { B } )  e. 
~P C  /\  (
w  \  { B } )  e.  Fin ) )
3225, 30, 31sylanbrc 646 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( w  \  { B } )  e.  ( ~P C  i^i  Fin ) )
33 incom 3525 . . . . . . . . . . . 12  |-  ( B  i^i  A )  =  ( A  i^i  B
)
34 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| w )
35 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  e.  _V )
3634, 35eqeltrrd 2510 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  e.  _V )
37 intex 4348 . . . . . . . . . . . . . . . . 17  |-  ( w  =/=  (/)  <->  |^| w  e.  _V )
3836, 37sylibr 204 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  =/=  (/) )
39 intssuni 4064 . . . . . . . . . . . . . . . 16  |-  ( w  =/=  (/)  ->  |^| w  C_  U. w )
4038, 39syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  C_  U. w
)
4118sseli 3336 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  e.  ~P ( { B }  u.  C
) )
42 elpwi 3799 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ~P ( { B }  u.  C
)  ->  w  C_  ( { B }  u.  C
) )
4341, 42syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )  ->  w  C_  ( { B }  u.  C
) )
4443ad2antrl 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  C_  ( { B }  u.  C )
)
45 pwidg 3803 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  V  ->  B  e.  ~P B )
4645snssd 3935 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  V  ->  { B }  C_  ~P B )
4746adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  { B }  C_ 
~P B )
48 simpr 448 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  C  C_  ~P B )
4947, 48unssd 3515 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( { B }  u.  C )  C_ 
~P B )
5049ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( { B }  u.  C )  C_  ~P B )
5144, 50sstrd 3350 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  w  C_  ~P B )
52 sspwuni 4168 . . . . . . . . . . . . . . . 16  |-  ( w 
C_  ~P B  <->  U. w  C_  B )
5351, 52sylib 189 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  U. w  C_  B )
5440, 53sstrd 3350 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| w  C_  B )
5534, 54eqsstrd 3374 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  C_  B )
56 df-ss 3326 . . . . . . . . . . . . 13  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
5755, 56sylib 189 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( A  i^i  B
)  =  A )
5833, 57syl5req 2480 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  A ) )
59 ineq2 3528 . . . . . . . . . . . 12  |-  ( A  =  |^| w  -> 
( B  i^i  A
)  =  ( B  i^i  |^| w ) )
6059ad2antll 710 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( B  i^i  A
)  =  ( B  i^i  |^| w ) )
6158, 60eqtrd 2467 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  |^| w ) )
62 intun 4074 . . . . . . . . . . . 12  |-  |^| ( { B }  u.  w
)  =  ( |^| { B }  i^i  |^| w )
63 intsng 4077 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  |^| { B }  =  B )
6463ineq1d 3533 . . . . . . . . . . . 12  |-  ( B  e.  V  ->  ( |^| { B }  i^i  |^| w )  =  ( B  i^i  |^| w
) )
6562, 64syl5req 2480 . . . . . . . . . . 11  |-  ( B  e.  V  ->  ( B  i^i  |^| w )  = 
|^| ( { B }  u.  w )
)
6665ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  -> 
( B  i^i  |^| w )  =  |^| ( { B }  u.  w ) )
6761, 66eqtrd 2467 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| ( { B }  u.  w
) )
68 undif2 3696 . . . . . . . . . 10  |-  ( { B }  u.  (
w  \  { B } ) )  =  ( { B }  u.  w )
6968inteqi 4046 . . . . . . . . 9  |-  |^| ( { B }  u.  (
w  \  { B } ) )  = 
|^| ( { B }  u.  w )
7067, 69syl6eqr 2485 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  |^| ( { B }  u.  (
w  \  { B } ) ) )
71 intun 4074 . . . . . . . . . 10  |-  |^| ( { B }  u.  (
w  \  { B } ) )  =  ( |^| { B }  i^i  |^| ( w  \  { B } ) )
7263ineq1d 3533 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( |^| { B }  i^i  |^| ( w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7371, 72syl5eq 2479 . . . . . . . . 9  |-  ( B  e.  V  ->  |^| ( { B }  u.  (
w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7473ad3antrrr 711 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  |^| ( { B }  u.  ( w  \  { B } ) )  =  ( B  i^i  |^| ( w  \  { B } ) ) )
7570, 74eqtrd 2467 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  A  =  ( B  i^i  |^| ( w  \  { B } ) ) )
76 inteq 4045 . . . . . . . . . 10  |-  ( v  =  ( w  \  { B } )  ->  |^| v  =  |^| ( w  \  { B } ) )
7776ineq2d 3534 . . . . . . . . 9  |-  ( v  =  ( w  \  { B } )  -> 
( B  i^i  |^| v )  =  ( B  i^i  |^| (
w  \  { B } ) ) )
7877eqeq2d 2446 . . . . . . . 8  |-  ( v  =  ( w  \  { B } )  -> 
( A  =  ( B  i^i  |^| v
)  <->  A  =  ( B  i^i  |^| ( w  \  { B } ) ) ) )
7978rspcev 3044 . . . . . . 7  |-  ( ( ( w  \  { B } )  e.  ( ~P C  i^i  Fin )  /\  A  =  ( B  i^i  |^| (
w  \  { B } ) ) )  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) )
8032, 75, 79syl2anc 643 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  (
w  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  A  =  |^| w ) )  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) )
8180rexlimdvaa 2823 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w  ->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) ) )
82 ssun1 3502 . . . . . . . . . . . 12  |-  { B }  C_  ( { B }  u.  C )
8382a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  { B }  C_  ( { B }  u.  C )
)
84 inss1 3553 . . . . . . . . . . . . . 14  |-  ( ~P C  i^i  Fin )  C_ 
~P C
8584sseli 3336 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  e.  ~P C )
86 elpwi 3799 . . . . . . . . . . . . 13  |-  ( v  e.  ~P C  -> 
v  C_  C )
87 ssun4 3505 . . . . . . . . . . . . 13  |-  ( v 
C_  C  ->  v  C_  ( { B }  u.  C ) )
8885, 86, 873syl 19 . . . . . . . . . . . 12  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  C_  ( { B }  u.  C ) )
8988adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  v  C_  ( { B }  u.  C ) )
9083, 89unssd 3515 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  C_  ( { B }  u.  C
) )
91 vex 2951 . . . . . . . . . . . 12  |-  v  e. 
_V
929, 91unex 4698 . . . . . . . . . . 11  |-  ( { B }  u.  v
)  e.  _V
9392elpw 3797 . . . . . . . . . 10  |-  ( ( { B }  u.  v )  e.  ~P ( { B }  u.  C )  <->  ( { B }  u.  v
)  C_  ( { B }  u.  C
) )
9490, 93sylibr 204 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  ~P ( { B }  u.  C
) )
95 snfi 7178 . . . . . . . . . 10  |-  { B }  e.  Fin
96 inss2 3554 . . . . . . . . . . . 12  |-  ( ~P C  i^i  Fin )  C_ 
Fin
9796sseli 3336 . . . . . . . . . . 11  |-  ( v  e.  ( ~P C  i^i  Fin )  ->  v  e.  Fin )
9897adantl 453 . . . . . . . . . 10  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  v  e.  Fin )
99 unfi 7365 . . . . . . . . . 10  |-  ( ( { B }  e.  Fin  /\  v  e.  Fin )  ->  ( { B }  u.  v )  e.  Fin )
10095, 98, 99sylancr 645 . . . . . . . . 9  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  Fin )
101 elin 3522 . . . . . . . . 9  |-  ( ( { B }  u.  v )  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  <->  ( ( { B }  u.  v
)  e.  ~P ( { B }  u.  C
)  /\  ( { B }  u.  v
)  e.  Fin )
)
10294, 100, 101sylanbrc 646 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( { B }  u.  v
)  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) )
10363eqcomd 2440 . . . . . . . . . . 11  |-  ( B  e.  V  ->  B  =  |^| { B }
)
104103ineq1d 3533 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  =  ( |^| { B }  i^i  |^| v ) )
105 intun 4074 . . . . . . . . . 10  |-  |^| ( { B }  u.  v
)  =  ( |^| { B }  i^i  |^| v )
106104, 105syl6eqr 2485 . . . . . . . . 9  |-  ( B  e.  V  ->  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)
107106ad3antrrr 711 . . . . . . . 8  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)
108 inteq 4045 . . . . . . . . . 10  |-  ( w  =  ( { B }  u.  v )  ->  |^| w  =  |^| ( { B }  u.  v ) )
109108eqeq2d 2446 . . . . . . . . 9  |-  ( w  =  ( { B }  u.  v )  ->  ( ( B  i^i  |^| v )  =  |^| w 
<->  ( B  i^i  |^| v )  =  |^| ( { B }  u.  v ) ) )
110109rspcev 3044 . . . . . . . 8  |-  ( ( ( { B }  u.  v )  e.  ( ~P ( { B }  u.  C )  i^i  Fin )  /\  ( B  i^i  |^| v )  = 
|^| ( { B }  u.  v )
)  ->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )
( B  i^i  |^| v )  =  |^| w )
111102, 107, 110syl2anc 643 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  E. w  e.  ( ~P ( { B }  u.  C
)  i^i  Fin )
( B  i^i  |^| v )  =  |^| w )
112 eqeq1 2441 . . . . . . . 8  |-  ( A  =  ( B  i^i  |^| v )  ->  ( A  =  |^| w  <->  ( B  i^i  |^| v )  = 
|^| w ) )
113112rexbidv 2718 . . . . . . 7  |-  ( A  =  ( B  i^i  |^| v )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w 
<->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) ( B  i^i  |^| v )  = 
|^| w ) )
114111, 113syl5ibrcom 214 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  C  C_  ~P B )  /\  A  e.  _V )  /\  v  e.  ( ~P C  i^i  Fin ) )  ->  ( A  =  ( B  i^i  |^| v )  ->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w ) )
115114rexlimdva 2822 . . . . 5  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v )  ->  E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w ) )
11681, 115impbid 184 . . . 4  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( E. w  e.  ( ~P ( { B }  u.  C )  i^i  Fin ) A  =  |^| w 
<->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v ) ) )
11717, 116bitrd 245 . . 3  |-  ( ( ( B  e.  V  /\  C  C_  ~P B
)  /\  A  e.  _V )  ->  ( A  e.  ( fi `  ( { B }  u.  C ) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
118117ex 424 . 2  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e. 
_V  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) ) )
1192, 7, 118pm5.21ndd 344 1  |-  ( ( B  e.  V  /\  C  C_  ~P B )  ->  ( A  e.  ( fi `  ( { B }  u.  C
) )  <->  E. v  e.  ( ~P C  i^i  Fin ) A  =  ( B  i^i  |^| v
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   {csn 3806   U.cuni 4007   |^|cint 4042   ` cfv 5445   Fincfn 7100   ficfi 7406
This theorem is referenced by:  elrfirn  26686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-fin 7104  df-fi 7407
  Copyright terms: Public domain W3C validator