MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuc Unicode version

Theorem elsuc 4584
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1  |-  A  e. 
_V
Assertion
Ref Expression
elsuc  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) )

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2  |-  A  e. 
_V
2 elsucg 4582 . 2  |-  ( A  e.  _V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
31, 2ax-mp 8 1  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    = wceq 1649    e. wcel 1717   _Vcvv 2892   suc csuc 4517
This theorem is referenced by:  sucel  4588  suctr  4598  limsssuc  4763  omsmolem  6825  cantnfle  7552  infxpenlem  7821  inatsk  8579  untsucf  24931  dfon2lem7  25162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-v 2894  df-un 3261  df-sn 3756  df-suc 4521
  Copyright terms: Public domain W3C validator