MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsucg Unicode version

Theorem elsucg 4459
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
elsucg  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )

Proof of Theorem elsucg
StepHypRef Expression
1 df-suc 4398 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2347 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3316 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 240 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsncg 3662 . . 3  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
65orbi2d 682 . 2  |-  ( A  e.  V  ->  (
( A  e.  B  \/  A  e.  { B } )  <->  ( A  e.  B  \/  A  =  B ) ) )
74, 6syl5bb 248 1  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    = wceq 1623    e. wcel 1684    u. cun 3150   {csn 3640   suc csuc 4394
This theorem is referenced by:  elsuc  4461  elelsuc  4464  sucidg  4470  ordsssuc  4479  ordsucelsuc  4613  suc11reg  7320  nlt1pi  8530
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-sn 3646  df-suc 4398
  Copyright terms: Public domain W3C validator