MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltp Unicode version

Theorem eltp 3679
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
eltp.1  |-  A  e. 
_V
Assertion
Ref Expression
eltp  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)

Proof of Theorem eltp
StepHypRef Expression
1 eltp.1 . 2  |-  A  e. 
_V
2 eltpg 3677 . 2  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
) )
31, 2ax-mp 10 1  |-  ( A  e.  { B ,  C ,  D }  <->  ( A  =  B  \/  A  =  C  \/  A  =  D )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ w3o 935    = wceq 1624    e. wcel 1685   _Vcvv 2789   {ctp 3643
This theorem is referenced by:  dftp2  3680  tpid1  3740  tpid2  3741  tpid3  3743  brtp  23509  axsltsolem1  23722  bpoly3  24200  fnckle  25444
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-v 2791  df-un 3158  df-sn 3647  df-pr 3648  df-tp 3649
  Copyright terms: Public domain W3C validator