HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop2 Unicode version

Theorem elunop2 22423
Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop2  |-  ( T  e.  UniOp 
<->  ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) )
Distinct variable group:    x, T

Proof of Theorem elunop2
StepHypRef Expression
1 unoplin 22330 . . 3  |-  ( T  e.  UniOp  ->  T  e.  LinOp
)
2 elunop 22282 . . . 4  |-  ( T  e.  UniOp 
<->  ( T : ~H -onto-> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  ( T `  y )
)  =  ( x 
.ih  y ) ) )
32simplbi 448 . . 3  |-  ( T  e.  UniOp  ->  T : ~H -onto-> ~H )
4 unopnorm 22327 . . . 4  |-  ( ( T  e.  UniOp  /\  x  e.  ~H )  ->  ( normh `  ( T `  x ) )  =  ( normh `  x )
)
54ralrimiva 2588 . . 3  |-  ( T  e.  UniOp  ->  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) )
61, 3, 53jca 1137 . 2  |-  ( T  e.  UniOp  ->  ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) )
7 eleq1 2313 . . 3  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( T  e.  UniOp  <->  if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  e. 
UniOp ) )
8 eleq1 2313 . . . . . . 7  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( T  e.  LinOp  <->  if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  e. 
LinOp ) )
9 foeq1 5304 . . . . . . 7  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( T : ~H -onto-> ~H 
<->  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) : ~H -onto-> ~H ) )
10 fveq2 5377 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( T `  x )  =  ( T `  y ) )
1110fveq2d 5381 . . . . . . . . . 10  |-  ( x  =  y  ->  ( normh `  ( T `  x ) )  =  ( normh `  ( T `  y ) ) )
12 fveq2 5377 . . . . . . . . . 10  |-  ( x  =  y  ->  ( normh `  x )  =  ( normh `  y )
)
1311, 12eqeq12d 2267 . . . . . . . . 9  |-  ( x  =  y  ->  (
( normh `  ( T `  x ) )  =  ( normh `  x )  <->  (
normh `  ( T `  y ) )  =  ( normh `  y )
) )
1413cbvralv 2708 . . . . . . . 8  |-  ( A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )  <->  A. y  e.  ~H  ( normh `  ( T `  y ) )  =  ( normh `  y )
)
15 fveq1 5376 . . . . . . . . . . 11  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( T `  y
)  =  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )
1615fveq2d 5381 . . . . . . . . . 10  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( normh `  ( T `  y ) )  =  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) ) )
1716eqeq1d 2261 . . . . . . . . 9  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( ( normh `  ( T `  y )
)  =  ( normh `  y )  <->  ( normh `  ( if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )  =  ( normh `  y )
) )
1817ralbidv 2527 . . . . . . . 8  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( A. y  e. 
~H  ( normh `  ( T `  y )
)  =  ( normh `  y )  <->  A. y  e.  ~H  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )  =  ( normh `  y )
) )
1914, 18syl5bb 250 . . . . . . 7  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x )  <->  A. y  e.  ~H  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )  =  ( normh `  y )
) )
208, 9, 193anbi123d 1257 . . . . . 6  |-  ( T  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) )  <->  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  e. 
LinOp  /\  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) : ~H -onto-> ~H  /\  A. y  e.  ~H  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )  =  ( normh `  y )
) ) )
21 eleq1 2313 . . . . . . 7  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( (  _I  |`  ~H )  e.  LinOp 
<->  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  e. 
LinOp ) )
22 foeq1 5304 . . . . . . 7  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( (  _I  |`  ~H ) : ~H -onto-> ~H  <->  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) : ~H -onto-> ~H ) )
23 fveq1 5376 . . . . . . . . . 10  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( (  _I  |`  ~H ) `  y )  =  ( if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )
2423fveq2d 5381 . . . . . . . . 9  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( normh `  ( (  _I  |`  ~H ) `  y ) )  =  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) ) )
2524eqeq1d 2261 . . . . . . . 8  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( ( normh `  (
(  _I  |`  ~H ) `  y ) )  =  ( normh `  y )  <->  (
normh `  ( if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) ,  T , 
(  _I  |`  ~H )
) `  y )
)  =  ( normh `  y ) ) )
2625ralbidv 2527 . . . . . . 7  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( A. y  e. 
~H  ( normh `  (
(  _I  |`  ~H ) `  y ) )  =  ( normh `  y )  <->  A. y  e.  ~H  ( normh `  ( if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) ,  T , 
(  _I  |`  ~H )
) `  y )
)  =  ( normh `  y ) ) )
2721, 22, 263anbi123d 1257 . . . . . 6  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  -> 
( ( (  _I  |`  ~H )  e.  LinOp  /\  (  _I  |`  ~H ) : ~H -onto-> ~H  /\  A. y  e.  ~H  ( normh `  (
(  _I  |`  ~H ) `  y ) )  =  ( normh `  y )
)  <->  ( if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) ,  T , 
(  _I  |`  ~H )
)  e.  LinOp  /\  if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) : ~H -onto-> ~H  /\  A. y  e.  ~H  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )  =  ( normh `  y )
) ) )
28 idlnop 22402 . . . . . . 7  |-  (  _I  |`  ~H )  e.  LinOp
29 f1oi 5368 . . . . . . . 8  |-  (  _I  |`  ~H ) : ~H -1-1-onto-> ~H
30 f1ofo 5336 . . . . . . . 8  |-  ( (  _I  |`  ~H ) : ~H -1-1-onto-> ~H  ->  (  _I  |` 
~H ) : ~H -onto-> ~H )
3129, 30ax-mp 10 . . . . . . 7  |-  (  _I  |`  ~H ) : ~H -onto-> ~H
32 fvresi 5563 . . . . . . . . 9  |-  ( y  e.  ~H  ->  (
(  _I  |`  ~H ) `  y )  =  y )
3332fveq2d 5381 . . . . . . . 8  |-  ( y  e.  ~H  ->  ( normh `  ( (  _I  |`  ~H ) `  y
) )  =  (
normh `  y ) )
3433rgen 2570 . . . . . . 7  |-  A. y  e.  ~H  ( normh `  (
(  _I  |`  ~H ) `  y ) )  =  ( normh `  y )
3528, 31, 343pm3.2i 1135 . . . . . 6  |-  ( (  _I  |`  ~H )  e.  LinOp  /\  (  _I  |` 
~H ) : ~H -onto-> ~H  /\  A. y  e. 
~H  ( normh `  (
(  _I  |`  ~H ) `  y ) )  =  ( normh `  y )
)
3620, 27, 35elimhyp 3518 . . . . 5  |-  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) )  e. 
LinOp  /\  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) : ~H -onto-> ~H  /\  A. y  e.  ~H  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )  =  ( normh `  y )
)
3736simp1i 969 . . . 4  |-  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) ,  T , 
(  _I  |`  ~H )
)  e.  LinOp
3836simp2i 970 . . . 4  |-  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) ,  T , 
(  _I  |`  ~H )
) : ~H -onto-> ~H
3936simp3i 971 . . . 4  |-  A. y  e.  ~H  ( normh `  ( if ( ( T  e. 
LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e. 
~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) ) ,  T ,  (  _I  |`  ~H ) ) `  y ) )  =  ( normh `  y )
4037, 38, 39lnopunii 22422 . . 3  |-  if ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) ,  T , 
(  _I  |`  ~H )
)  e.  UniOp
417, 40dedth 3511 . 2  |-  ( ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\  A. x  e.  ~H  ( normh `  ( T `  x )
)  =  ( normh `  x ) )  ->  T  e.  UniOp )
426, 41impbii 182 1  |-  ( T  e.  UniOp 
<->  ( T  e.  LinOp  /\  T : ~H -onto-> ~H  /\ 
A. x  e.  ~H  ( normh `  ( T `  x ) )  =  ( normh `  x )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   ifcif 3470    _I cid 4197    |` cres 4582   -onto->wfo 4590   -1-1-onto->wf1o 4591   ` cfv 4592  (class class class)co 5710   ~Hchil 21329    .ih csp 21332   normhcno 21333   LinOpclo 21357   UniOpcuo 21359
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-hnorm 21378  df-hvsub 21381  df-lnop 22251  df-unop 22253
  Copyright terms: Public domain W3C validator