MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Unicode version

Theorem en2lp 7407
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp  |-  -.  ( A  e.  B  /\  B  e.  A )

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 7406 . . 3  |-  _E  Fr  _V
2 efrn2lp 4457 . . 3  |-  ( (  _E  Fr  _V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  -.  ( A  e.  B  /\  B  e.  A )
)
31, 2mpan 651 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
4 elex 2872 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
5 elex 2872 . . . 4  |-  ( B  e.  A  ->  B  e.  _V )
64, 5anim12i 549 . . 3  |-  ( ( A  e.  B  /\  B  e.  A )  ->  ( A  e.  _V  /\  B  e.  _V )
)
76con3i 127 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
83, 7pm2.61i 156 1  |-  -.  ( A  e.  B  /\  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    e. wcel 1710   _Vcvv 2864    _E cep 4385    Fr wfr 4431
This theorem is referenced by:  preleq  7408  suc11reg  7410  axunndlem1  8307  axacndlem5  8323  tratrb  28044  tratrbVD  28399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-reg 7396
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-br 4105  df-opab 4159  df-eprel 4387  df-fr 4434
  Copyright terms: Public domain W3C validator