MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Unicode version

Theorem en2lp 7527
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp  |-  -.  ( A  e.  B  /\  B  e.  A )

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 7526 . . 3  |-  _E  Fr  _V
2 efrn2lp 4524 . . 3  |-  ( (  _E  Fr  _V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  -.  ( A  e.  B  /\  B  e.  A )
)
31, 2mpan 652 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
4 elex 2924 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
5 elex 2924 . . . 4  |-  ( B  e.  A  ->  B  e.  _V )
64, 5anim12i 550 . . 3  |-  ( ( A  e.  B  /\  B  e.  A )  ->  ( A  e.  _V  /\  B  e.  _V )
)
76con3i 129 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
83, 7pm2.61i 158 1  |-  -.  ( A  e.  B  /\  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    e. wcel 1721   _Vcvv 2916    _E cep 4452    Fr wfr 4498
This theorem is referenced by:  preleq  7528  suc11reg  7530  axunndlem1  8426  axacndlem5  8442  tratrb  28331  tratrbVD  28682
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-reg 7516
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-eprel 4454  df-fr 4501
  Copyright terms: Public domain W3C validator