MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  endisj Unicode version

Theorem endisj 6944
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1  |-  A  e. 
_V
endisj.2  |-  B  e. 
_V
Assertion
Ref Expression
endisj  |-  E. x E. y ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4  |-  A  e. 
_V
2 0ex 4151 . . . 4  |-  (/)  e.  _V
31, 2xpsnen 6941 . . 3  |-  ( A  X.  { (/) } ) 
~~  A
4 endisj.2 . . . 4  |-  B  e. 
_V
5 1on 6481 . . . . 5  |-  1o  e.  On
65elexi 2798 . . . 4  |-  1o  e.  _V
74, 6xpsnen 6941 . . 3  |-  ( B  X.  { 1o }
)  ~~  B
83, 7pm3.2i 443 . 2  |-  ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)
9 xp01disj 6490 . 2  |-  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) )  =  (/)
10 p0ex 4196 . . . 4  |-  { (/) }  e.  _V
111, 10xpex 4800 . . 3  |-  ( A  X.  { (/) } )  e.  _V
12 snex 4215 . . . 4  |-  { 1o }  e.  _V
134, 12xpex 4800 . . 3  |-  ( B  X.  { 1o }
)  e.  _V
14 breq1 4027 . . . . 5  |-  ( x  =  ( A  X.  { (/) } )  -> 
( x  ~~  A  <->  ( A  X.  { (/) } )  ~~  A ) )
15 breq1 4027 . . . . 5  |-  ( y  =  ( B  X.  { 1o } )  -> 
( y  ~~  B  <->  ( B  X.  { 1o } )  ~~  B
) )
1614, 15bi2anan9 845 . . . 4  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( x  ~~  A  /\  y  ~~  B
)  <->  ( ( A  X.  { (/) } ) 
~~  A  /\  ( B  X.  { 1o }
)  ~~  B )
) )
17 ineq12 3366 . . . . 5  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( x  i^i  y
)  =  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) ) )
1817eqeq1d 2292 . . . 4  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( x  i^i  y )  =  (/)  <->  (
( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/) ) )
1916, 18anbi12d 693 . . 3  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )  <->  ( (
( A  X.  { (/)
} )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)  /\  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o } ) )  =  (/) ) ) )
2011, 13, 19spc2ev 2877 . 2  |-  ( ( ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B )  /\  (
( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/) )  ->  E. x E. y
( ( x  ~~  A  /\  y  ~~  B
)  /\  ( x  i^i  y )  =  (/) ) )
218, 9, 20mp2an 655 1  |-  E. x E. y ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1529    = wceq 1624    e. wcel 1685   _Vcvv 2789    i^i cin 3152   (/)c0 3456   {csn 3641   class class class wbr 4024   Oncon0 4391    X. cxp 4686   1oc1o 6467    ~~ cen 6855
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-suc 4397  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-1o 6474  df-en 6859
  Copyright terms: Public domain W3C validator