Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Unicode version

Theorem epweon 4766
 Description: The epsilon relation well-orders the class of ordinal numbers. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
epweon

Proof of Theorem epweon
StepHypRef Expression
1 ordon 4765 . 2
2 ordwe 4596 . 2
31, 2ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   cep 4494   wwe 4542   word 4582  con0 4583 This theorem is referenced by:  onnseq  6608  ordunifi  7359  ordtypelem8  7496  oismo  7511  cantnfcl  7624  leweon  7895  r0weon  7896  ac10ct  7917  dfac12lem2  8026  cflim2  8145  cofsmo  8151  hsmexlem1  8308  smobeth  8463  gruina  8695  ltsopi  8767  omsinds  25496  tfrALTlem  25559  tfr1ALT  25560  tfr2ALT  25561  tfr3ALT  25562  finminlem  26323  dnwech  27125  aomclem4  27134 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587
 Copyright terms: Public domain W3C validator