MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv2f Structured version   Unicode version

Theorem eqfnfv2f 5823
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5819 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1  |-  F/_ x F
eqfnfv2f.2  |-  F/_ x G
Assertion
Ref Expression
eqfnfv2f  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem eqfnfv2f
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5819 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
2 eqfnfv2f.1 . . . . 5  |-  F/_ x F
3 nfcv 2571 . . . . 5  |-  F/_ x
z
42, 3nffv 5727 . . . 4  |-  F/_ x
( F `  z
)
5 eqfnfv2f.2 . . . . 5  |-  F/_ x G
65, 3nffv 5727 . . . 4  |-  F/_ x
( G `  z
)
74, 6nfeq 2578 . . 3  |-  F/ x
( F `  z
)  =  ( G `
 z )
8 nfv 1629 . . 3  |-  F/ z ( F `  x
)  =  ( G `
 x )
9 fveq2 5720 . . . 4  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
10 fveq2 5720 . . . 4  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
119, 10eqeq12d 2449 . . 3  |-  ( z  =  x  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  x )  =  ( G `  x ) ) )
127, 8, 11cbvral 2920 . 2  |-  ( A. z  e.  A  ( F `  z )  =  ( G `  z )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
131, 12syl6bb 253 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652   F/_wnfc 2558   A.wral 2697    Fn wfn 5441   ` cfv 5446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
  Copyright terms: Public domain W3C validator