MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equid Unicode version

Theorem equid 1818
Description: Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms (although the proof, as you can see below, is not as obvious as you might think). This proof uses only axioms without distinct variable conditions and thus requires no dummy variables. A simpler proof, similar to Tarki's, is possible if we make use of ax-17 1628; see the proof of equid1 1820. See equidALT 1819 for an alternate proof. (Contributed by NM, 30-Nov-2008.) (Proof modification is discouraged.)
Assertion
Ref Expression
equid  |-  x  =  x

Proof of Theorem equid
StepHypRef Expression
1 ax-9 1684 . . 3  |-  -.  A. x  -.  x  =  x
2 hbn1 1564 . . . 4  |-  ( -. 
A. x  x  =  x  ->  A. x  -.  A. x  x  =  x )
3 ax-12o 1664 . . . . . . 7  |-  ( -. 
A. x  x  =  x  ->  ( -.  A. x  x  =  x  ->  ( x  =  x  ->  A. x  x  =  x )
) )
43pm2.43i 45 . . . . . 6  |-  ( -. 
A. x  x  =  x  ->  ( x  =  x  ->  A. x  x  =  x )
)
54con3d 127 . . . . 5  |-  ( -. 
A. x  x  =  x  ->  ( -.  A. x  x  =  x  ->  -.  x  =  x ) )
65pm2.43i 45 . . . 4  |-  ( -. 
A. x  x  =  x  ->  -.  x  =  x )
72, 6alrimih 1553 . . 3  |-  ( -. 
A. x  x  =  x  ->  A. x  -.  x  =  x
)
81, 7mt3 173 . 2  |-  A. x  x  =  x
98a4i 1699 1  |-  x  =  x
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6   A.wal 1532
This theorem is referenced by:  stdpc6  1821  equcomi-o  1823  equveli  1880  sbid  1895  ax11eq  2105  exists1  2202  vjust  2726  nfccdeq  2917  sbc8g  2926  rab0  3379  dfid3  4200  reusv5OLD  4432  reusv7OLD  4434  relop  4738  fv2  5370  fsplit  6072  ruv  7195  konigthlem  8067  alexsubALTlem3  17537  isppw2  20119  avril1  20597  mathbox  22783  foo3  22784  domep  23248  dffix2  23551  elfuns  23559  vecval3b  24549  mamulid  26555  elnev  26736  ipo0  26750  ifr0  26751  a12lem1  27694
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-12o 1664  ax-9 1684  ax-4 1692
  Copyright terms: Public domain W3C validator