MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs5 Unicode version

Theorem equs5 1939
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equs5  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )

Proof of Theorem equs5
StepHypRef Expression
1 nfnae 1899 . 2  |-  F/ x  -.  A. x  x  =  y
2 nfa1 1758 . 2  |-  F/ x A. x ( x  =  y  ->  ph )
3 ax11o 1937 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
43imp3a 420 . 2  |-  ( -. 
A. x  x  =  y  ->  ( (
x  =  y  /\  ph )  ->  A. x
( x  =  y  ->  ph ) ) )
51, 2, 4exlimd 1805 1  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528
This theorem is referenced by:  sb3  1991  sb4  1992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator