MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvinop Unicode version

Theorem eqvinop 4209
Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
eqvinop.1  |-  B  e. 
_V
eqvinop.2  |-  C  e. 
_V
Assertion
Ref Expression
eqvinop  |-  ( A  =  <. B ,  C >.  <->  E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )
)
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem eqvinop
StepHypRef Expression
1 eqvinop.1 . . . . . . . 8  |-  B  e. 
_V
2 eqvinop.2 . . . . . . . 8  |-  C  e. 
_V
31, 2opth2 4206 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. B ,  C >.  <-> 
( x  =  B  /\  y  =  C ) )
43anbi2i 678 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  ( A  =  <. x ,  y >.  /\  (
x  =  B  /\  y  =  C )
) )
5 ancom 439 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  =  B  /\  y  =  C )
)  <->  ( ( x  =  B  /\  y  =  C )  /\  A  =  <. x ,  y
>. ) )
6 anass 633 . . . . . 6  |-  ( ( ( x  =  B  /\  y  =  C )  /\  A  = 
<. x ,  y >.
)  <->  ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y
>. ) ) )
74, 5, 63bitri 264 . . . . 5  |-  ( ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y >. )
) )
87exbii 1580 . . . 4  |-  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  =  <. B ,  C >. )  <->  E. y
( x  =  B  /\  ( y  =  C  /\  A  = 
<. x ,  y >.
) ) )
9 19.42v 2039 . . . 4  |-  ( E. y ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y
>. ) )  <->  ( x  =  B  /\  E. y
( y  =  C  /\  A  =  <. x ,  y >. )
) )
10 opeq2 3757 . . . . . . 7  |-  ( y  =  C  ->  <. x ,  y >.  =  <. x ,  C >. )
1110eqeq2d 2267 . . . . . 6  |-  ( y  =  C  ->  ( A  =  <. x ,  y >.  <->  A  =  <. x ,  C >. )
)
122, 11ceqsexv 2791 . . . . 5  |-  ( E. y ( y  =  C  /\  A  = 
<. x ,  y >.
)  <->  A  =  <. x ,  C >. )
1312anbi2i 678 . . . 4  |-  ( ( x  =  B  /\  E. y ( y  =  C  /\  A  = 
<. x ,  y >.
) )  <->  ( x  =  B  /\  A  = 
<. x ,  C >. ) )
148, 9, 133bitri 264 . . 3  |-  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  =  <. B ,  C >. )  <->  ( x  =  B  /\  A  = 
<. x ,  C >. ) )
1514exbii 1580 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  E. x ( x  =  B  /\  A  = 
<. x ,  C >. ) )
16 opeq1 3756 . . . 4  |-  ( x  =  B  ->  <. x ,  C >.  =  <. B ,  C >. )
1716eqeq2d 2267 . . 3  |-  ( x  =  B  ->  ( A  =  <. x ,  C >.  <->  A  =  <. B ,  C >. )
)
181, 17ceqsexv 2791 . 2  |-  ( E. x ( x  =  B  /\  A  = 
<. x ,  C >. )  <-> 
A  =  <. B ,  C >. )
1915, 18bitr2i 243 1  |-  ( A  =  <. B ,  C >.  <->  E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   _Vcvv 2757   <.cop 3603
This theorem is referenced by:  copsexg  4210  ralxpf  4804  oprabid  5802
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609
  Copyright terms: Public domain W3C validator