Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze Unicode version

Theorem erdsze 24336
Description: The Erdős-Szekeres theorem. For any injective sequence  F on the reals of length at least 
( R  -  1 )  x.  ( S  -  1 )  +  1, there is either a subsequence of length at least  R on which  F is increasing (i.e. a  <  ,  < order isomorphism) or a subsequence of length at least  S on which  F is decreasing (i.e. a  <  ,  `'  < order isomorphism, recalling that  `'  < is the greater-than relation). (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdsze.r  |-  ( ph  ->  R  e.  NN )
erdsze.s  |-  ( ph  ->  S  e.  NN )
erdsze.l  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
Assertion
Ref Expression
erdsze  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Distinct variable groups:    F, s    R, s    N, s    ph, s    S, s

Proof of Theorem erdsze
Dummy variables  w  x  y  z  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . 2  |-  ( ph  ->  N  e.  NN )
2 erdsze.f . 2  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
3 reseq2 5053 . . . . . . . . . 10  |-  ( w  =  y  ->  ( F  |`  w )  =  ( F  |`  y
) )
4 isoeq1 5939 . . . . . . . . . 10  |-  ( ( F  |`  w )  =  ( F  |`  y )  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) ) ) )
53, 4syl 15 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) ) ) )
6 isoeq4 5942 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) ) ) )
7 imaeq2 5111 . . . . . . . . . 10  |-  ( w  =  y  ->  ( F " w )  =  ( F " y
) )
8 isoeq5 5943 . . . . . . . . . 10  |-  ( ( F " w )  =  ( F "
y )  ->  (
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
97, 8syl 15 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
105, 6, 93bitrd 270 . . . . . . . 8  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
11 elequ2 1720 . . . . . . . 8  |-  ( w  =  y  ->  (
z  e.  w  <->  z  e.  y ) )
1210, 11anbi12d 691 . . . . . . 7  |-  ( w  =  y  ->  (
( ( F  |`  w )  Isom  <  ,  <  ( w ,  ( F " w
) )  /\  z  e.  w )  <->  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) ) )
1312cbvrabv 2872 . . . . . 6  |-  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) }  =  {
y  e.  ~P (
1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }
14 oveq2 5989 . . . . . . . 8  |-  ( z  =  x  ->  (
1 ... z )  =  ( 1 ... x
) )
1514pweqd 3719 . . . . . . 7  |-  ( z  =  x  ->  ~P ( 1 ... z
)  =  ~P (
1 ... x ) )
16 elequ1 1718 . . . . . . . 8  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
1716anbi2d 684 . . . . . . 7  |-  ( z  =  x  ->  (
( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y )  <->  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) ) )
1815, 17rabeqbidv 2868 . . . . . 6  |-  ( z  =  x  ->  { y  e.  ~P ( 1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } )
1913, 18syl5eq 2410 . . . . 5  |-  ( z  =  x  ->  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) }  =  {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } )
2019imaeq2d 5115 . . . 4  |-  ( z  =  x  ->  ( #
" { w  e. 
~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) } )  =  ( # " {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) )
2120supeq1d 7346 . . 3  |-  ( z  =  x  ->  sup ( ( # " {
w  e.  ~P (
1 ... z )  |  ( ( F  |`  w )  Isom  <  ,  <  ( w ,  ( F " w
) )  /\  z  e.  w ) } ) ,  RR ,  <  )  =  sup ( (
# " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
2221cbvmptv 4213 . 2  |-  ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
)  =  ( x  e.  ( 1 ... N )  |->  sup (
( # " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
23 isoeq1 5939 . . . . . . . . . 10  |-  ( ( F  |`  w )  =  ( F  |`  y )  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( w ,  ( F " w
) ) ) )
243, 23syl 15 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( w ,  ( F " w
) ) ) )
25 isoeq4 5942 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " w
) ) ) )
26 isoeq5 5943 . . . . . . . . . 10  |-  ( ( F " w )  =  ( F "
y )  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( y ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
277, 26syl 15 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( y ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
2824, 25, 273bitrd 270 . . . . . . . 8  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
2928, 11anbi12d 691 . . . . . . 7  |-  ( w  =  y  ->  (
( ( F  |`  w )  Isom  <  ,  `'  <  ( w ,  ( F " w
) )  /\  z  e.  w )  <->  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F "
y ) )  /\  z  e.  y )
) )
3029cbvrabv 2872 . . . . . 6  |-  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) }  =  { y  e.  ~P ( 1 ... z
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  z  e.  y ) }
3116anbi2d 684 . . . . . . 7  |-  ( z  =  x  ->  (
( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  z  e.  y )  <->  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F "
y ) )  /\  x  e.  y )
) )
3215, 31rabeqbidv 2868 . . . . . 6  |-  ( z  =  x  ->  { y  e.  ~P ( 1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } )
3330, 32syl5eq 2410 . . . . 5  |-  ( z  =  x  ->  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } )
3433imaeq2d 5115 . . . 4  |-  ( z  =  x  ->  ( #
" { w  e. 
~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } )  =  ( # " {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) )
3534supeq1d 7346 . . 3  |-  ( z  =  x  ->  sup ( ( # " {
w  e.  ~P (
1 ... z )  |  ( ( F  |`  w )  Isom  <  ,  `'  <  ( w ,  ( F " w
) )  /\  z  e.  w ) } ) ,  RR ,  <  )  =  sup ( (
# " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
3635cbvmptv 4213 . 2  |-  ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) )  =  ( x  e.  ( 1 ... N )  |->  sup (
( # " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
37 eqid 2366 . 2  |-  ( n  e.  ( 1 ... N )  |->  <. (
( z  e.  ( 1 ... N ) 
|->  sup ( ( # " { w  e.  ~P ( 1 ... z
)  |  ( ( F  |`  w )  Isom  <  ,  <  (
w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
) `  n ) ,  ( ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) ) `  n )
>. )  =  (
n  e.  ( 1 ... N )  |->  <.
( ( z  e.  ( 1 ... N
)  |->  sup ( ( # " { w  e.  ~P ( 1 ... z
)  |  ( ( F  |`  w )  Isom  <  ,  <  (
w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
) `  n ) ,  ( ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) ) `  n )
>. )
38 erdsze.r . 2  |-  ( ph  ->  R  e.  NN )
39 erdsze.s . 2  |-  ( ph  ->  S  e.  NN )
40 erdsze.l . 2  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
411, 2, 22, 36, 37, 38, 39, 40erdszelem11 24335 1  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1647    e. wcel 1715   E.wrex 2629   {crab 2632   ~Pcpw 3714   <.cop 3732   class class class wbr 4125    e. cmpt 4179   `'ccnv 4791    |` cres 4794   "cima 4795   -1-1->wf1 5355   ` cfv 5358    Isom wiso 5359  (class class class)co 5981   supcsup 7340   RRcr 8883   1c1 8885    x. cmul 8889    < clt 9014    <_ cle 9015    - cmin 9184   NNcn 9893   ...cfz 10935   #chash 11505
This theorem is referenced by:  erdsze2lem2  24338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-hash 11506
  Copyright terms: Public domain W3C validator