MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erth2 Unicode version

Theorem erth2 6659
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth2.1  |-  ( ph  ->  R  Er  X )
erth2.2  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
erth2  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth2
StepHypRef Expression
1 erth2.1 . . 3  |-  ( ph  ->  R  Er  X )
21ersymb 6628 . 2  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
3 erth2.2 . . . 4  |-  ( ph  ->  B  e.  X )
41, 3erth 6658 . . 3  |-  ( ph  ->  ( B R A  <->  [ B ] R  =  [ A ] R
) )
5 eqcom 2258 . . 3  |-  ( [ B ] R  =  [ A ] R  <->  [ A ] R  =  [ B ] R
)
64, 5syl6bb 254 . 2  |-  ( ph  ->  ( B R A  <->  [ A ] R  =  [ B ] R
) )
72, 6bitrd 246 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    = wceq 1619    e. wcel 1621   class class class wbr 3983    Er wer 6611   [cec 6612
This theorem is referenced by:  qliftel  6695
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-br 3984  df-opab 4038  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-er 6614  df-ec 6616
  Copyright terms: Public domain W3C validator