MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgcvga Structured version   Unicode version

Theorem eucalgcvga 13069
Description: Once Euclid's Algorithm halts after  N steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
eucalg.2  |-  R  =  seq  0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
eucalgcvga.3  |-  N  =  ( 2nd `  A
)
Assertion
Ref Expression
eucalgcvga  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Distinct variable groups:    x, y, N    x, A, y    x, R
Allowed substitution hints:    R( y)    E( x, y)    K( x, y)

Proof of Theorem eucalgcvga
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7  |-  N  =  ( 2nd `  A
)
2 xp2nd 6369 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  NN0 )
31, 2syl5eqel 2519 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  N  e. 
NN0 )
4 eluznn0 10538 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N ) )  ->  K  e.  NN0 )
53, 4sylan 458 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  NN0 )
6 nn0uz 10512 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
7 eucalg.2 . . . . . . 7  |-  R  =  seq  0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
8 0z 10285 . . . . . . . 8  |-  0  e.  ZZ
98a1i 11 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  0  e.  ZZ )
10 id 20 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  A  e.  ( NN0  X.  NN0 ) )
11 eucalgval.1 . . . . . . . . 9  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
1211eucalgf 13066 . . . . . . . 8  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
1312a1i 11 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
)
146, 7, 9, 10, 13algrf 13056 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  R : NN0
--> ( NN0  X.  NN0 ) )
1514ffvelrnda 5862 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  NN0 )  ->  ( R `  K )  e.  ( NN0  X.  NN0 ) )
165, 15syldan 457 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( R `  K )  e.  ( NN0  X.  NN0 )
)
17 fvres 5737 . . . 4  |-  ( ( R `  K )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  K ) )  =  ( 2nd `  ( R `  K
) ) )
1816, 17syl 16 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  ( 2nd `  ( R `  K
) ) )
19 simpl 444 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  A  e.  ( NN0  X.  NN0 )
)
20 fvres 5737 . . . . . . . 8  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( 2nd `  A ) )
2120, 1syl6eqr 2485 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  N )
2221fveq2d 5724 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A ) )  =  ( ZZ>= `  N
) )
2322eleq2d 2502 . . . . 5  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  <->  K  e.  ( ZZ>= `  N )
) )
2423biimpar 472 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  A
) ) )
25 f2ndres 6361 . . . . 5  |-  ( 2nd  |`  ( NN0  X.  NN0 ) ) : ( NN0  X.  NN0 ) --> NN0
2611eucalglt 13068 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 z ) )  =/=  0  ->  ( 2nd `  ( E `  z ) )  < 
( 2nd `  z
) ) )
2712ffvelrni 5861 . . . . . . . 8  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( E `
 z )  e.  ( NN0  X.  NN0 ) )
28 fvres 5737 . . . . . . . 8  |-  ( ( E `  z )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
2927, 28syl 16 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
3029neeq1d 2611 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  <->  ( 2nd `  ( E `  z )
)  =/=  0 ) )
31 fvres 5737 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  z )  =  ( 2nd `  z ) )
3229, 31breq12d 4217 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  < 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 z )  <->  ( 2nd `  ( E `  z
) )  <  ( 2nd `  z ) ) )
3326, 30, 323imtr4d 260 . . . . 5  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( E `  z )
)  <  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  z
) ) )
34 eqid 2435 . . . . 5  |-  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A )
3512, 7, 25, 33, 34algcvga 13062 . . . 4  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  -> 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  K ) )  =  0 ) )
3619, 24, 35sylc 58 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  0 )
3718, 36eqtr3d 2469 . 2  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( 2nd `  ( R `  K
) )  =  0 )
3837ex 424 1  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   ifcif 3731   {csn 3806   <.cop 3809   class class class wbr 4204    X. cxp 4868    |` cres 4872    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1stc1st 6339   2ndc2nd 6340   0cc0 8982    < clt 9112   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480    mod cmo 11242    seq cseq 11315
This theorem is referenced by:  eucalg  13070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fl 11194  df-mod 11243  df-seq 11316
  Copyright terms: Public domain W3C validator