MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgval Unicode version

Theorem eucalgval 13028
Description: Euclid's Algorithm eucalg 13033 computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0.

The value of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
Distinct variable group:    x, y, X
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval
StepHypRef Expression
1 df-ov 6043 . . 3  |-  ( ( 1st `  X ) E ( 2nd `  X
) )  =  ( E `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. )
2 xp1st 6335 . . . 4  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 1st `  X )  e.  NN0 )
3 xp2nd 6336 . . . 4  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  X )  e.  NN0 )
4 eucalgval.1 . . . . 5  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
54eucalgval2 13027 . . . 4  |-  ( ( ( 1st `  X
)  e.  NN0  /\  ( 2nd `  X )  e.  NN0 )  -> 
( ( 1st `  X
) E ( 2nd `  X ) )  =  if ( ( 2nd `  X )  =  0 ,  <. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
62, 3, 5syl2anc 643 . . 3  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( ( 1st `  X ) E ( 2nd `  X
) )  =  if ( ( 2nd `  X
)  =  0 , 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
71, 6syl5eqr 2450 . 2  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 <. ( 1st `  X
) ,  ( 2nd `  X ) >. )  =  if ( ( 2nd `  X )  =  0 ,  <. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
8 1st2nd2 6345 . . 3  |-  ( X  e.  ( NN0  X.  NN0 )  ->  X  = 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. )
98fveq2d 5691 . 2  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  ( E `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. ) )
108fveq2d 5691 . . . . 5  |-  ( X  e.  ( NN0  X.  NN0 )  ->  (  mod  `  X )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X )
>. ) )
11 df-ov 6043 . . . . 5  |-  ( ( 1st `  X )  mod  ( 2nd `  X
) )  =  (  mod  `  <. ( 1st `  X ) ,  ( 2nd `  X )
>. )
1210, 11syl6eqr 2454 . . . 4  |-  ( X  e.  ( NN0  X.  NN0 )  ->  (  mod  `  X )  =  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) )
1312opeq2d 3951 . . 3  |-  ( X  e.  ( NN0  X.  NN0 )  ->  <. ( 2nd `  X ) ,  (  mod  `  X
) >.  =  <. ( 2nd `  X ) ,  ( ( 1st `  X
)  mod  ( 2nd `  X ) ) >.
)
148, 13ifeq12d 3715 . 2  |-  ( X  e.  ( NN0  X.  NN0 )  ->  if ( ( 2nd `  X
)  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. )  =  if ( ( 2nd `  X
)  =  0 , 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. ,  <. ( 2nd `  X ) ,  ( ( 1st `  X )  mod  ( 2nd `  X ) )
>. ) )
157, 9, 143eqtr4d 2446 1  |-  ( X  e.  ( NN0  X.  NN0 )  ->  ( E `
 X )  =  if ( ( 2nd `  X )  =  0 ,  X ,  <. ( 2nd `  X ) ,  (  mod  `  X
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   ifcif 3699   <.cop 3777    X. cxp 4835   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307   0cc0 8946   NN0cn0 10177    mod cmo 11205
This theorem is referenced by:  eucalginv  13030  eucalglt  13031
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309
  Copyright terms: Public domain W3C validator