MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgval2 Structured version   Unicode version

Theorem eucalgval2 13077
Description: The value of the step function  E for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Distinct variable groups:    x, y, M    x, N, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval2
StepHypRef Expression
1 simpr 449 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  ->  y  =  N )
21eqeq1d 2446 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
3 opeq12 3988 . . 3  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. x ,  y >.  =  <. M ,  N >. )
4 oveq12 6093 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  ->  ( x  mod  y
)  =  ( M  mod  N ) )
51, 4opeq12d 3994 . . 3  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. y ,  ( x  mod  y ) >.  =  <. N ,  ( M  mod  N )
>. )
62, 3, 5ifbieq12d 3763 . 2  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N , 
( M  mod  N
) >. ) )
7 eucalgval.1 . 2  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
8 opex 4430 . . 3  |-  <. M ,  N >.  e.  _V
9 opex 4430 . . 3  |-  <. N , 
( M  mod  N
) >.  e.  _V
108, 9ifex 3799 . 2  |-  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
)  e.  _V
116, 7, 10ovmpt2a 6207 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   ifcif 3741   <.cop 3819  (class class class)co 6084    e. cmpt2 6086   0cc0 8995   NN0cn0 10226    mod cmo 11255
This theorem is referenced by:  eucalgval  13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089
  Copyright terms: Public domain W3C validator