MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerth Unicode version

Theorem eulerth 12851
Description: Euler's theorem, a generalization of Fermat's little theorem. If  A and  N are coprime, then  A ^ phi ( N )  ==  1, mod  N. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )

Proof of Theorem eulerth
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phicl 12837 . . . . . . . 8  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
21nnnn0d 10018 . . . . . . 7  |-  ( N  e.  NN  ->  ( phi `  N )  e. 
NN0 )
3 hashfz1 11345 . . . . . . 7  |-  ( ( phi `  N )  e.  NN0  ->  ( # `  ( 1 ... ( phi `  N ) ) )  =  ( phi `  N ) )
42, 3syl 15 . . . . . 6  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... ( phi `  N
) ) )  =  ( phi `  N
) )
5 dfphi2 12842 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
64, 5eqtrd 2315 . . . . 5  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
763ad2ant1 976 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( # `
 ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
8 fzfi 11034 . . . . 5  |-  ( 1 ... ( phi `  N ) )  e. 
Fin
9 fzofi 11036 . . . . . 6  |-  ( 0..^ N )  e.  Fin
10 ssrab2 3258 . . . . . 6  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  C_  (
0..^ N )
11 ssfi 7083 . . . . . 6  |-  ( ( ( 0..^ N )  e.  Fin  /\  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  C_  ( 0..^ N ) )  ->  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 }  e.  Fin )
129, 10, 11mp2an 653 . . . . 5  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin
13 hashen 11346 . . . . 5  |-  ( ( ( 1 ... ( phi `  N ) )  e.  Fin  /\  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin )  ->  ( (
# `  ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )  <-> 
( 1 ... ( phi `  N ) ) 
~~  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } ) )
148, 12, 13mp2an 653 . . . 4  |-  ( (
# `  ( 1 ... ( phi `  N
) ) )  =  ( # `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )  <-> 
( 1 ... ( phi `  N ) ) 
~~  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } )
157, 14sylib 188 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
16 bren 6871 . . 3  |-  ( ( 1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  <->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
1715, 16sylib 188 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
18 simpl 443 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
19 oveq1 5865 . . . . . . 7  |-  ( k  =  y  ->  (
k  gcd  N )  =  ( y  gcd 
N ) )
2019eqeq1d 2291 . . . . . 6  |-  ( k  =  y  ->  (
( k  gcd  N
)  =  1  <->  (
y  gcd  N )  =  1 ) )
2120cbvrabv 2787 . . . . 5  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  =  {
y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }
22 eqid 2283 . . . . 5  |-  ( 1 ... ( phi `  N ) )  =  ( 1 ... ( phi `  N ) )
23 simpr 447 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  f :
( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
24 fveq2 5525 . . . . . . . 8  |-  ( k  =  x  ->  (
f `  k )  =  ( f `  x ) )
2524oveq2d 5874 . . . . . . 7  |-  ( k  =  x  ->  ( A  x.  ( f `  k ) )  =  ( A  x.  (
f `  x )
) )
2625oveq1d 5873 . . . . . 6  |-  ( k  =  x  ->  (
( A  x.  (
f `  k )
)  mod  N )  =  ( ( A  x.  ( f `  x ) )  mod 
N ) )
2726cbvmptv 4111 . . . . 5  |-  ( k  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( f `
 k ) )  mod  N ) )  =  ( x  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( f `  x
) )  mod  N
) )
2818, 21, 22, 23, 27eulerthlem2 12850 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( ( A ^ ( phi `  N ) )  mod 
N )  =  ( 1  mod  N ) )
2928ex 423 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) ) )
3029exlimdv 1664 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( E. f  f :
( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  ->  ( ( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) ) )
3117, 30mpd 14 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   Fincfn 6863   0cc0 8737   1c1 8738    x. cmul 8742   NNcn 9746   NN0cn0 9965   ZZcz 10024   ...cfz 10782  ..^cfzo 10870    mod cmo 10973   ^cexp 11104   #chash 11337    gcd cgcd 12685   phicphi 12832
This theorem is referenced by:  fermltl  12852  prmdiv  12853  odzcllem  12857  odzphi  12861  lgslem1  20535  lgsqrlem2  20581
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-phi 12834
  Copyright terms: Public domain W3C validator