Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupickbi Unicode version

Theorem eupickbi 2346
 Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eupickbi

Proof of Theorem eupickbi
StepHypRef Expression
1 eupicka 2344 . . 3
21ex 424 . 2
3 nfa1 1806 . . . . 5
4 ancl 530 . . . . . . 7
5 simpl 444 . . . . . . 7
64, 5impbid1 195 . . . . . 6
76sps 1770 . . . . 5
83, 7eubid 2287 . . . 4
9 euex 2303 . . . 4
108, 9syl6bi 220 . . 3
1110com12 29 . 2
122, 11impbid 184 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549  wex 1550  weu 2280 This theorem is referenced by:  sbaniota  27550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285
 Copyright terms: Public domain W3C validator