MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem4 Unicode version

Theorem evlslem4 16207
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
evlslem4.b  |-  B  =  ( Base `  R
)
evlslem4.z  |-  .0.  =  ( 0g `  R )
evlslem4.t  |-  .x.  =  ( .r `  R )
evlslem4.r  |-  ( ph  ->  R  e.  Ring )
evlslem4.x  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
evlslem4.y  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
Assertion
Ref Expression
evlslem4  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
Distinct variable groups:    x, y, I    x, J, y    ph, x, y    y, X    x, B, y    x,  .x. , y    x, Y
Allowed substitution hints:    R( x, y)    X( x)    Y( y)    .0. ( x, y)

Proof of Theorem evlslem4
StepHypRef Expression
1 nfcv 2394 . . . . . . 7  |-  F/_ i
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
2 nfcv 2394 . . . . . . 7  |-  F/_ j
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
3 nfmpt1 4083 . . . . . . . . 9  |-  F/_ x
( x  e.  I  |->  X )
4 nfcv 2394 . . . . . . . . 9  |-  F/_ x
i
53, 4nffv 5465 . . . . . . . 8  |-  F/_ x
( ( x  e.  I  |->  X ) `  i )
6 nfcv 2394 . . . . . . . 8  |-  F/_ x  .x.
7 nfcv 2394 . . . . . . . 8  |-  F/_ x
( ( y  e.  J  |->  Y ) `  j )
85, 6, 7nfov 5815 . . . . . . 7  |-  F/_ x
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
9 nfcv 2394 . . . . . . . 8  |-  F/_ y
( ( x  e.  I  |->  X ) `  i )
10 nfcv 2394 . . . . . . . 8  |-  F/_ y  .x.
11 nfmpt1 4083 . . . . . . . . 9  |-  F/_ y
( y  e.  J  |->  Y )
12 nfcv 2394 . . . . . . . . 9  |-  F/_ y
j
1311, 12nffv 5465 . . . . . . . 8  |-  F/_ y
( ( y  e.  J  |->  Y ) `  j )
149, 10, 13nfov 5815 . . . . . . 7  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
15 fveq2 5458 . . . . . . . 8  |-  ( x  =  i  ->  (
( x  e.  I  |->  X ) `  x
)  =  ( ( x  e.  I  |->  X ) `  i ) )
16 fveq2 5458 . . . . . . . 8  |-  ( y  =  j  ->  (
( y  e.  J  |->  Y ) `  y
)  =  ( ( y  e.  J  |->  Y ) `  j ) )
1715, 16oveqan12d 5811 . . . . . . 7  |-  ( ( x  =  i  /\  y  =  j )  ->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )  =  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )
181, 2, 8, 14, 17cbvmpt2 5859 . . . . . 6  |-  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) ) )  =  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
19 vex 2766 . . . . . . . . 9  |-  i  e. 
_V
20 vex 2766 . . . . . . . . 9  |-  j  e. 
_V
2119, 20eqop2 6097 . . . . . . . 8  |-  ( z  =  <. i ,  j
>. 
<->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j ) ) )
22 fveq2 5458 . . . . . . . . . 10  |-  ( ( 1st `  z )  =  i  ->  (
( x  e.  I  |->  X ) `  ( 1st `  z ) )  =  ( ( x  e.  I  |->  X ) `
 i ) )
23 fveq2 5458 . . . . . . . . . 10  |-  ( ( 2nd `  z )  =  j  ->  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) )  =  ( ( y  e.  J  |->  Y ) `
 j ) )
2422, 23oveqan12d 5811 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j )  -> 
( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )
2524adantl 454 . . . . . . . 8  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j ) )  ->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
2621, 25sylbi 189 . . . . . . 7  |-  ( z  =  <. i ,  j
>.  ->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
2726mpt2mpt 5873 . . . . . 6  |-  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) ) )  =  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  ( ( y  e.  J  |->  Y ) `
 j ) ) )
2818, 27eqtr4i 2281 . . . . 5  |-  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) ) )  =  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) )
29 simp2 961 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  x  e.  I )
30 evlslem4.x . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
31303adant3 980 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  X  e.  B )
32 eqid 2258 . . . . . . . . 9  |-  ( x  e.  I  |->  X )  =  ( x  e.  I  |->  X )
3332fvmpt2 5542 . . . . . . . 8  |-  ( ( x  e.  I  /\  X  e.  B )  ->  ( ( x  e.  I  |->  X ) `  x )  =  X )
3429, 31, 33syl2anc 645 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
x  e.  I  |->  X ) `  x )  =  X )
35 simp3 962 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  y  e.  J )
36 evlslem4.y . . . . . . . . 9  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
37363adant2 979 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  Y  e.  B )
38 eqid 2258 . . . . . . . . 9  |-  ( y  e.  J  |->  Y )  =  ( y  e.  J  |->  Y )
3938fvmpt2 5542 . . . . . . . 8  |-  ( ( y  e.  J  /\  Y  e.  B )  ->  ( ( y  e.  J  |->  Y ) `  y )  =  Y )
4035, 37, 39syl2anc 645 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  y )  =  Y )
4134, 40oveq12d 5810 . . . . . 6  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) )  =  ( X 
.x.  Y ) )
4241mpt2eq3dva 5846 . . . . 5  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
4328, 42syl5reqr 2305 . . . 4  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) )  =  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) )
4443cnveqd 4845 . . 3  |-  ( ph  ->  `' ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) )  =  `' ( z  e.  ( I  X.  J
)  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) )
4544imaeq1d 4999 . 2  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) )  =  ( `' ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) " ( _V 
\  {  .0.  }
) ) )
46 difxp 6087 . . . . . 6  |-  ( ( I  X.  J ) 
\  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  =  ( ( ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) )  X.  J )  u.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )
4746eleq2i 2322 . . . . 5  |-  ( z  e.  ( ( I  X.  J )  \ 
( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  <->  z  e.  ( ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  u.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) ) ) )
48 elun 3291 . . . . 5  |-  ( z  e.  ( ( ( I  \  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) ) )  X.  J )  u.  (
I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  <->  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )
4947, 48bitri 242 . . . 4  |-  ( z  e.  ( ( I  X.  J )  \ 
( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  <->  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )
5030, 32fmptd 5618 . . . . . . . 8  |-  ( ph  ->  ( x  e.  I  |->  X ) : I --> B )
51 xp1st 6083 . . . . . . . 8  |-  ( z  e.  ( ( I 
\  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )  X.  J )  ->  ( 1st `  z )  e.  ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) ) )
52 id 21 . . . . . . . . 9  |-  ( ( x  e.  I  |->  X ) : I --> B  -> 
( x  e.  I  |->  X ) : I --> B )
53 ssid 3172 . . . . . . . . . 10  |-  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) )
5453a1i 12 . . . . . . . . 9  |-  ( ( x  e.  I  |->  X ) : I --> B  -> 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )
5552, 54suppssr 5593 . . . . . . . 8  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  ( 1st `  z )  e.  ( I  \  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) ) ) )  ->  ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  =  .0.  )
5650, 51, 55syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  =  .0.  )
5756oveq1d 5807 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  (  .0.  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) )
58 evlslem4.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
5958adantr 453 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  R  e.  Ring )
6036, 38fmptd 5618 . . . . . . . 8  |-  ( ph  ->  ( y  e.  J  |->  Y ) : J --> B )
61 xp2nd 6084 . . . . . . . 8  |-  ( z  e.  ( ( I 
\  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )  X.  J )  ->  ( 2nd `  z )  e.  J )
62 ffvelrn 5597 . . . . . . . 8  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  ( 2nd `  z
)  e.  J )  ->  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) )  e.  B
)
6360, 61, 62syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
y  e.  J  |->  Y ) `  ( 2nd `  z ) )  e.  B )
64 evlslem4.b . . . . . . . 8  |-  B  =  ( Base `  R
)
65 evlslem4.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
66 evlslem4.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
6764, 65, 66rnglz 15339 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) )  e.  B )  -> 
(  .0.  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
6859, 63, 67syl2anc 645 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
6957, 68eqtrd 2290 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
70 xp2nd 6084 . . . . . . . 8  |-  ( z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( 2nd `  z )  e.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) ) ) )
71 id 21 . . . . . . . . 9  |-  ( ( y  e.  J  |->  Y ) : J --> B  -> 
( y  e.  J  |->  Y ) : J --> B )
72 ssid 3172 . . . . . . . . . 10  |-  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) )
7372a1i 12 . . . . . . . . 9  |-  ( ( y  e.  J  |->  Y ) : J --> B  -> 
( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) )
7471, 73suppssr 5593 . . . . . . . 8  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  ( 2nd `  z
)  e.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) )  =  .0.  )
7560, 70, 74syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
y  e.  J  |->  Y ) `  ( 2nd `  z ) )  =  .0.  )
7675oveq2d 5808 . . . . . 6  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  ( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  .0.  ) )
7758adantr 453 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  R  e.  Ring )
78 xp1st 6083 . . . . . . . 8  |-  ( z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( 1st `  z )  e.  I
)
79 ffvelrn 5597 . . . . . . . 8  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  ( 1st `  z )  e.  I
)  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )
8050, 78, 79syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )
8164, 65, 66rngrz 15340 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )  -> 
( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  .0.  )  =  .0.  )
8277, 80, 81syl2anc 645 . . . . . 6  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  .0.  )  =  .0.  )
8376, 82eqtrd 2290 . . . . 5  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
8469, 83jaodan 763 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )  ->  (
( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
8549, 84sylan2b 463 . . 3  |-  ( (
ph  /\  z  e.  ( ( I  X.  J )  \  (
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  X.  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
8685suppss2 6007 . 2  |-  ( ph  ->  ( `' ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
8745, 86eqsstrd 3187 1  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   _Vcvv 2763    \ cdif 3124    u. cun 3125    C_ wss 3127   {csn 3614   <.cop 3617    e. cmpt 4051    X. cxp 4659   `'ccnv 4660   "cima 4664   -->wf 4669   ` cfv 4673  (class class class)co 5792    e. cmpt2 5794   1stc1st 6054   2ndc2nd 6055   Basecbs 13110   .rcmulr 13171   0gc0g 13362   Ringcrg 15299
This theorem is referenced by:  evlslem2  16211
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-plusg 13183  df-0g 13366  df-mnd 14329  df-grp 14451  df-minusg 14452  df-mgp 15288  df-ring 15302
  Copyright terms: Public domain W3C validator