MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem4 Structured version   Unicode version

Theorem evlslem4 16566
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
evlslem4.b  |-  B  =  ( Base `  R
)
evlslem4.z  |-  .0.  =  ( 0g `  R )
evlslem4.t  |-  .x.  =  ( .r `  R )
evlslem4.r  |-  ( ph  ->  R  e.  Ring )
evlslem4.x  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
evlslem4.y  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
Assertion
Ref Expression
evlslem4  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
Distinct variable groups:    x, y, I    x, J, y    ph, x, y    y, X    x, B, y    x,  .x. , y    x, Y
Allowed substitution hints:    R( x, y)    X( x)    Y( y)    .0. ( x, y)

Proof of Theorem evlslem4
Dummy variables  i 
j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2574 . . . . . . 7  |-  F/_ i
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
2 nfcv 2574 . . . . . . 7  |-  F/_ j
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
3 nffvmpt1 5738 . . . . . . . 8  |-  F/_ x
( ( x  e.  I  |->  X ) `  i )
4 nfcv 2574 . . . . . . . 8  |-  F/_ x  .x.
5 nfcv 2574 . . . . . . . 8  |-  F/_ x
( ( y  e.  J  |->  Y ) `  j )
63, 4, 5nfov 6106 . . . . . . 7  |-  F/_ x
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
7 nfcv 2574 . . . . . . . 8  |-  F/_ y
( ( x  e.  I  |->  X ) `  i )
8 nfcv 2574 . . . . . . . 8  |-  F/_ y  .x.
9 nffvmpt1 5738 . . . . . . . 8  |-  F/_ y
( ( y  e.  J  |->  Y ) `  j )
107, 8, 9nfov 6106 . . . . . . 7  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
11 fveq2 5730 . . . . . . . 8  |-  ( x  =  i  ->  (
( x  e.  I  |->  X ) `  x
)  =  ( ( x  e.  I  |->  X ) `  i ) )
12 fveq2 5730 . . . . . . . 8  |-  ( y  =  j  ->  (
( y  e.  J  |->  Y ) `  y
)  =  ( ( y  e.  J  |->  Y ) `  j ) )
1311, 12oveqan12d 6102 . . . . . . 7  |-  ( ( x  =  i  /\  y  =  j )  ->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )  =  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )
141, 2, 6, 10, 13cbvmpt2 6153 . . . . . 6  |-  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) ) )  =  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
15 vex 2961 . . . . . . . . 9  |-  i  e. 
_V
16 vex 2961 . . . . . . . . 9  |-  j  e. 
_V
1715, 16eqop2 6392 . . . . . . . 8  |-  ( z  =  <. i ,  j
>. 
<->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j ) ) )
18 fveq2 5730 . . . . . . . . . 10  |-  ( ( 1st `  z )  =  i  ->  (
( x  e.  I  |->  X ) `  ( 1st `  z ) )  =  ( ( x  e.  I  |->  X ) `
 i ) )
19 fveq2 5730 . . . . . . . . . 10  |-  ( ( 2nd `  z )  =  j  ->  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) )  =  ( ( y  e.  J  |->  Y ) `
 j ) )
2018, 19oveqan12d 6102 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j )  -> 
( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )
2120adantl 454 . . . . . . . 8  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  =  i  /\  ( 2nd `  z )  =  j ) )  ->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
2217, 21sylbi 189 . . . . . . 7  |-  ( z  =  <. i ,  j
>.  ->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
2322mpt2mpt 6167 . . . . . 6  |-  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) ) )  =  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  ( ( y  e.  J  |->  Y ) `
 j ) ) )
2414, 23eqtr4i 2461 . . . . 5  |-  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) ) )  =  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) )
25 simp2 959 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  x  e.  I )
26 evlslem4.x . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
27263adant3 978 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  X  e.  B )
28 eqid 2438 . . . . . . . . 9  |-  ( x  e.  I  |->  X )  =  ( x  e.  I  |->  X )
2928fvmpt2 5814 . . . . . . . 8  |-  ( ( x  e.  I  /\  X  e.  B )  ->  ( ( x  e.  I  |->  X ) `  x )  =  X )
3025, 27, 29syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
x  e.  I  |->  X ) `  x )  =  X )
31 simp3 960 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  y  e.  J )
32 evlslem4.y . . . . . . . . 9  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
33323adant2 977 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  Y  e.  B )
34 eqid 2438 . . . . . . . . 9  |-  ( y  e.  J  |->  Y )  =  ( y  e.  J  |->  Y )
3534fvmpt2 5814 . . . . . . . 8  |-  ( ( y  e.  J  /\  Y  e.  B )  ->  ( ( y  e.  J  |->  Y ) `  y )  =  Y )
3631, 33, 35syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  y )  =  Y )
3730, 36oveq12d 6101 . . . . . 6  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) )  =  ( X 
.x.  Y ) )
3837mpt2eq3dva 6140 . . . . 5  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
3924, 38syl5reqr 2485 . . . 4  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) )  =  ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) )
4039cnveqd 5050 . . 3  |-  ( ph  ->  `' ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) )  =  `' ( z  e.  ( I  X.  J
)  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) )
4140imaeq1d 5204 . 2  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) )  =  ( `' ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) ) " ( _V 
\  {  .0.  }
) ) )
42 difxp 6382 . . . . . 6  |-  ( ( I  X.  J ) 
\  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  =  ( ( ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) )  X.  J )  u.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )
4342eleq2i 2502 . . . . 5  |-  ( z  e.  ( ( I  X.  J )  \ 
( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  <->  z  e.  ( ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  u.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) ) ) )
44 elun 3490 . . . . 5  |-  ( z  e.  ( ( ( I  \  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) ) )  X.  J )  u.  (
I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  <->  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )
4543, 44bitri 242 . . . 4  |-  ( z  e.  ( ( I  X.  J )  \ 
( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  <->  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )
4626, 28fmptd 5895 . . . . . . . 8  |-  ( ph  ->  ( x  e.  I  |->  X ) : I --> B )
47 xp1st 6378 . . . . . . . 8  |-  ( z  e.  ( ( I 
\  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )  X.  J )  ->  ( 1st `  z )  e.  ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) ) )
48 id 21 . . . . . . . . 9  |-  ( ( x  e.  I  |->  X ) : I --> B  -> 
( x  e.  I  |->  X ) : I --> B )
49 ssid 3369 . . . . . . . . . 10  |-  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) )
5049a1i 11 . . . . . . . . 9  |-  ( ( x  e.  I  |->  X ) : I --> B  -> 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )
5148, 50suppssr 5866 . . . . . . . 8  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  ( 1st `  z )  e.  ( I  \  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) ) ) )  ->  ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  =  .0.  )
5246, 47, 51syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  =  .0.  )
5352oveq1d 6098 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  (  .0.  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) ) )
54 evlslem4.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
5554adantr 453 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  R  e.  Ring )
5632, 34fmptd 5895 . . . . . . . 8  |-  ( ph  ->  ( y  e.  J  |->  Y ) : J --> B )
57 xp2nd 6379 . . . . . . . 8  |-  ( z  e.  ( ( I 
\  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )  X.  J )  ->  ( 2nd `  z )  e.  J )
58 ffvelrn 5870 . . . . . . . 8  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  ( 2nd `  z
)  e.  J )  ->  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) )  e.  B
)
5956, 57, 58syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
y  e.  J  |->  Y ) `  ( 2nd `  z ) )  e.  B )
60 evlslem4.b . . . . . . . 8  |-  B  =  ( Base `  R
)
61 evlslem4.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
62 evlslem4.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
6360, 61, 62rnglz 15702 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) )  e.  B )  -> 
(  .0.  .x.  (
( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
6455, 59, 63syl2anc 644 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
6553, 64eqtrd 2470 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
66 xp2nd 6379 . . . . . . . 8  |-  ( z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( 2nd `  z )  e.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) ) ) )
67 id 21 . . . . . . . . 9  |-  ( ( y  e.  J  |->  Y ) : J --> B  -> 
( y  e.  J  |->  Y ) : J --> B )
68 ssid 3369 . . . . . . . . . 10  |-  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) )
6968a1i 11 . . . . . . . . 9  |-  ( ( y  e.  J  |->  Y ) : J --> B  -> 
( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) )
7067, 69suppssr 5866 . . . . . . . 8  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  ( 2nd `  z
)  e.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) )  =  .0.  )
7156, 66, 70syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
y  e.  J  |->  Y ) `  ( 2nd `  z ) )  =  .0.  )
7271oveq2d 6099 . . . . . 6  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  ( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  .0.  ) )
7354adantr 453 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  R  e.  Ring )
74 xp1st 6378 . . . . . . . 8  |-  ( z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( 1st `  z )  e.  I
)
75 ffvelrn 5870 . . . . . . . 8  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  ( 1st `  z )  e.  I
)  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )
7646, 74, 75syl2an 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )
7760, 61, 62rngrz 15703 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  ( 1st `  z ) )  e.  B )  -> 
( ( ( x  e.  I  |->  X ) `
 ( 1st `  z
) )  .x.  .0.  )  =  .0.  )
7873, 76, 77syl2anc 644 . . . . . 6  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  .0.  )  =  .0.  )
7972, 78eqtrd 2470 . . . . 5  |-  ( (
ph  /\  z  e.  ( I  X.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
8065, 79jaodan 762 . . . 4  |-  ( (
ph  /\  ( z  e.  ( ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  X.  J )  \/  z  e.  ( I  X.  ( J 
\  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) ) )  ->  (
( ( x  e.  I  |->  X ) `  ( 1st `  z ) )  .x.  ( ( y  e.  J  |->  Y ) `  ( 2nd `  z ) ) )  =  .0.  )
8145, 80sylan2b 463 . . 3  |-  ( (
ph  /\  z  e.  ( ( I  X.  J )  \  (
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  X.  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) ) ) )  ->  ( (
( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) )  =  .0.  )
8281suppss2 6302 . 2  |-  ( ph  ->  ( `' ( z  e.  ( I  X.  J )  |->  ( ( ( x  e.  I  |->  X ) `  ( 1st `  z ) ) 
.x.  ( ( y  e.  J  |->  Y ) `
 ( 2nd `  z
) ) ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
8341, 82eqsstrd 3384 1  |-  ( ph  ->  ( `' ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) )
" ( _V  \  {  .0.  } ) ) 
C_  ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    u. cun 3320    C_ wss 3322   {csn 3816   <.cop 3819    e. cmpt 4268    X. cxp 4878   `'ccnv 4879   "cima 4883   -->wf 5452   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   1stc1st 6349   2ndc2nd 6350   Basecbs 13471   .rcmulr 13532   0gc0g 13725   Ringcrg 15662
This theorem is referenced by:  evlslem2  16570
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-plusg 13544  df-0g 13729  df-mnd 14692  df-grp 14814  df-minusg 14815  df-mgp 15651  df-rng 15665
  Copyright terms: Public domain W3C validator